This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frsn | |- ( Rel R -> ( R Fr { A } <-> -. A R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 2 | fr0 | |- R Fr (/) |
|
| 3 | freq2 | |- ( { A } = (/) -> ( R Fr { A } <-> R Fr (/) ) ) |
|
| 4 | 2 3 | mpbiri | |- ( { A } = (/) -> R Fr { A } ) |
| 5 | 1 4 | sylbi | |- ( -. A e. _V -> R Fr { A } ) |
| 6 | 5 | adantl | |- ( ( Rel R /\ -. A e. _V ) -> R Fr { A } ) |
| 7 | brrelex1 | |- ( ( Rel R /\ A R A ) -> A e. _V ) |
|
| 8 | 7 | stoic1a | |- ( ( Rel R /\ -. A e. _V ) -> -. A R A ) |
| 9 | 6 8 | 2thd | |- ( ( Rel R /\ -. A e. _V ) -> ( R Fr { A } <-> -. A R A ) ) |
| 10 | 9 | ex | |- ( Rel R -> ( -. A e. _V -> ( R Fr { A } <-> -. A R A ) ) ) |
| 11 | df-fr | |- ( R Fr { A } <-> A. x ( ( x C_ { A } /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
|
| 12 | sssn | |- ( x C_ { A } <-> ( x = (/) \/ x = { A } ) ) |
|
| 13 | neor | |- ( ( x = (/) \/ x = { A } ) <-> ( x =/= (/) -> x = { A } ) ) |
|
| 14 | 12 13 | sylbb | |- ( x C_ { A } -> ( x =/= (/) -> x = { A } ) ) |
| 15 | 14 | imp | |- ( ( x C_ { A } /\ x =/= (/) ) -> x = { A } ) |
| 16 | 15 | adantl | |- ( ( A e. _V /\ ( x C_ { A } /\ x =/= (/) ) ) -> x = { A } ) |
| 17 | eqimss | |- ( x = { A } -> x C_ { A } ) |
|
| 18 | 17 | adantl | |- ( ( A e. _V /\ x = { A } ) -> x C_ { A } ) |
| 19 | snnzg | |- ( A e. _V -> { A } =/= (/) ) |
|
| 20 | neeq1 | |- ( x = { A } -> ( x =/= (/) <-> { A } =/= (/) ) ) |
|
| 21 | 19 20 | syl5ibrcom | |- ( A e. _V -> ( x = { A } -> x =/= (/) ) ) |
| 22 | 21 | imp | |- ( ( A e. _V /\ x = { A } ) -> x =/= (/) ) |
| 23 | 18 22 | jca | |- ( ( A e. _V /\ x = { A } ) -> ( x C_ { A } /\ x =/= (/) ) ) |
| 24 | 16 23 | impbida | |- ( A e. _V -> ( ( x C_ { A } /\ x =/= (/) ) <-> x = { A } ) ) |
| 25 | 24 | imbi1d | |- ( A e. _V -> ( ( ( x C_ { A } /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) <-> ( x = { A } -> E. y e. x A. z e. x -. z R y ) ) ) |
| 26 | 25 | albidv | |- ( A e. _V -> ( A. x ( ( x C_ { A } /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) <-> A. x ( x = { A } -> E. y e. x A. z e. x -. z R y ) ) ) |
| 27 | snex | |- { A } e. _V |
|
| 28 | raleq | |- ( x = { A } -> ( A. z e. x -. z R y <-> A. z e. { A } -. z R y ) ) |
|
| 29 | 28 | rexeqbi1dv | |- ( x = { A } -> ( E. y e. x A. z e. x -. z R y <-> E. y e. { A } A. z e. { A } -. z R y ) ) |
| 30 | 27 29 | ceqsalv | |- ( A. x ( x = { A } -> E. y e. x A. z e. x -. z R y ) <-> E. y e. { A } A. z e. { A } -. z R y ) |
| 31 | 26 30 | bitrdi | |- ( A e. _V -> ( A. x ( ( x C_ { A } /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) <-> E. y e. { A } A. z e. { A } -. z R y ) ) |
| 32 | 11 31 | bitrid | |- ( A e. _V -> ( R Fr { A } <-> E. y e. { A } A. z e. { A } -. z R y ) ) |
| 33 | breq2 | |- ( y = A -> ( z R y <-> z R A ) ) |
|
| 34 | 33 | notbid | |- ( y = A -> ( -. z R y <-> -. z R A ) ) |
| 35 | 34 | ralbidv | |- ( y = A -> ( A. z e. { A } -. z R y <-> A. z e. { A } -. z R A ) ) |
| 36 | 35 | rexsng | |- ( A e. _V -> ( E. y e. { A } A. z e. { A } -. z R y <-> A. z e. { A } -. z R A ) ) |
| 37 | breq1 | |- ( z = A -> ( z R A <-> A R A ) ) |
|
| 38 | 37 | notbid | |- ( z = A -> ( -. z R A <-> -. A R A ) ) |
| 39 | 38 | ralsng | |- ( A e. _V -> ( A. z e. { A } -. z R A <-> -. A R A ) ) |
| 40 | 32 36 39 | 3bitrd | |- ( A e. _V -> ( R Fr { A } <-> -. A R A ) ) |
| 41 | 10 40 | pm2.61d2 | |- ( Rel R -> ( R Fr { A } <-> -. A R A ) ) |