This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup3.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| frmdup3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| frmdup3.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | ||
| Assertion | frmdup3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ∃! 𝑚 ∈ ( 𝑀 MndHom 𝐺 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup3.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | frmdup3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | frmdup3.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) | |
| 5 | simp1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝐺 ∈ Mnd ) | |
| 6 | simp2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝐼 ∈ 𝑉 ) | |
| 7 | simp3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝐴 : 𝐼 ⟶ 𝐵 ) | |
| 8 | 1 2 4 5 6 7 | frmdup1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∈ ( 𝑀 MndHom 𝐺 ) ) |
| 9 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝐺 ∈ Mnd ) |
| 10 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 11 | 7 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐵 ) |
| 12 | simpr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 13 | 1 2 4 9 10 11 3 12 | frmdup2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ‘ ( 𝑈 ‘ 𝑦 ) ) = ( 𝐴 ‘ 𝑦 ) ) |
| 14 | 13 | mpteq2dva | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ‘ ( 𝑈 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝐴 ‘ 𝑦 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 16 | 15 2 | mhmf | ⊢ ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∈ ( 𝑀 MndHom 𝐺 ) → ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
| 17 | 8 16 | syl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
| 18 | 3 | vrmdf | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 20 | 1 15 | frmdbas | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 22 | 21 | feq3d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ↔ 𝑈 : 𝐼 ⟶ Word 𝐼 ) ) |
| 23 | 19 22 | mpbird | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) |
| 24 | fcompt | ⊢ ( ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) : ( Base ‘ 𝑀 ) ⟶ 𝐵 ∧ 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) → ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∘ 𝑈 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ‘ ( 𝑈 ‘ 𝑦 ) ) ) ) | |
| 25 | 17 23 24 | syl2anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∘ 𝑈 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ‘ ( 𝑈 ‘ 𝑦 ) ) ) ) |
| 26 | 7 | feqmptd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝐴 = ( 𝑦 ∈ 𝐼 ↦ ( 𝐴 ‘ 𝑦 ) ) ) |
| 27 | 14 25 26 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∘ 𝑈 ) = 𝐴 ) |
| 28 | 1 2 3 | frmdup3lem | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝑚 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝑚 ∘ 𝑈 ) = 𝐴 ) ) → 𝑚 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) |
| 29 | 28 | expr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ 𝑚 ∈ ( 𝑀 MndHom 𝐺 ) ) → ( ( 𝑚 ∘ 𝑈 ) = 𝐴 → 𝑚 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) ) |
| 30 | 29 | ralrimiva | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ∀ 𝑚 ∈ ( 𝑀 MndHom 𝐺 ) ( ( 𝑚 ∘ 𝑈 ) = 𝐴 → 𝑚 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) ) |
| 31 | coeq1 | ⊢ ( 𝑚 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) → ( 𝑚 ∘ 𝑈 ) = ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∘ 𝑈 ) ) | |
| 32 | 31 | eqeq1d | ⊢ ( 𝑚 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) → ( ( 𝑚 ∘ 𝑈 ) = 𝐴 ↔ ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∘ 𝑈 ) = 𝐴 ) ) |
| 33 | 32 | eqreu | ⊢ ( ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ∘ 𝑈 ) = 𝐴 ∧ ∀ 𝑚 ∈ ( 𝑀 MndHom 𝐺 ) ( ( 𝑚 ∘ 𝑈 ) = 𝐴 → 𝑚 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) ) → ∃! 𝑚 ∈ ( 𝑀 MndHom 𝐺 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) |
| 34 | 8 27 30 33 | syl3anc | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ∃! 𝑚 ∈ ( 𝑀 MndHom 𝐺 ) ( 𝑚 ∘ 𝑈 ) = 𝐴 ) |