This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for frmdup3 . (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup3.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| frmdup3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| frmdup3.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | ||
| Assertion | frmdup3lem | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup3.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | frmdup3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | frmdup3.u | ⊢ 𝑈 = ( varFMnd ‘ 𝐼 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 5 | 4 2 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
| 6 | 5 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ) |
| 7 | 1 4 | frmdbas | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 10 | 9 | feq2d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → ( 𝐹 : ( Base ‘ 𝑀 ) ⟶ 𝐵 ↔ 𝐹 : Word 𝐼 ⟶ 𝐵 ) ) |
| 11 | 6 10 | mpbid | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 : Word 𝐼 ⟶ 𝐵 ) |
| 12 | 11 | feqmptd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 13 | simplrl | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ) | |
| 14 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝑥 ∈ Word 𝐼 ) | |
| 15 | 3 | vrmdf | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝑈 : 𝐼 ⟶ Word 𝐼 ) |
| 17 | 8 | feq3d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → ( 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ↔ 𝑈 : 𝐼 ⟶ Word 𝐼 ) ) |
| 18 | 16 17 | mpbird | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) |
| 20 | wrdco | ⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝑈 : 𝐼 ⟶ ( Base ‘ 𝑀 ) ) → ( 𝑈 ∘ 𝑥 ) ∈ Word ( Base ‘ 𝑀 ) ) | |
| 21 | 14 19 20 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑈 ∘ 𝑥 ) ∈ Word ( Base ‘ 𝑀 ) ) |
| 22 | 4 | gsumwmhm | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝑈 ∘ 𝑥 ) ∈ Word ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) ) ) |
| 23 | 13 21 22 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ‘ ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) ) ) |
| 24 | simpll2 | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → 𝐼 ∈ 𝑉 ) | |
| 25 | 1 3 | frmdgsum | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
| 26 | 24 14 25 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) = 𝑥 ) |
| 27 | 26 | fveq2d | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ‘ ( 𝑀 Σg ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 28 | coass | ⊢ ( ( 𝐹 ∘ 𝑈 ) ∘ 𝑥 ) = ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) | |
| 29 | simplrr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ∘ 𝑈 ) = 𝐴 ) | |
| 30 | 29 | coeq1d | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( ( 𝐹 ∘ 𝑈 ) ∘ 𝑥 ) = ( 𝐴 ∘ 𝑥 ) ) |
| 31 | 28 30 | eqtr3id | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) = ( 𝐴 ∘ 𝑥 ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐺 Σg ( 𝐹 ∘ ( 𝑈 ∘ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) |
| 33 | 23 27 32 | 3eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) ∧ 𝑥 ∈ Word 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) |
| 34 | 33 | mpteq2dva | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) |
| 35 | 12 34 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝑀 MndHom 𝐺 ) ∧ ( 𝐹 ∘ 𝑈 ) = 𝐴 ) ) → 𝐹 = ( 𝑥 ∈ Word 𝐼 ↦ ( 𝐺 Σg ( 𝐴 ∘ 𝑥 ) ) ) ) |