This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdup3.m | |- M = ( freeMnd ` I ) |
|
| frmdup3.b | |- B = ( Base ` G ) |
||
| frmdup3.u | |- U = ( varFMnd ` I ) |
||
| Assertion | frmdup3 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> E! m e. ( M MndHom G ) ( m o. U ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdup3.m | |- M = ( freeMnd ` I ) |
|
| 2 | frmdup3.b | |- B = ( Base ` G ) |
|
| 3 | frmdup3.u | |- U = ( varFMnd ` I ) |
|
| 4 | eqid | |- ( x e. Word I |-> ( G gsum ( A o. x ) ) ) = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) |
|
| 5 | simp1 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> G e. Mnd ) |
|
| 6 | simp2 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> I e. V ) |
|
| 7 | simp3 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> A : I --> B ) |
|
| 8 | 1 2 4 5 6 7 | frmdup1 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( x e. Word I |-> ( G gsum ( A o. x ) ) ) e. ( M MndHom G ) ) |
| 9 | 5 | adantr | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ y e. I ) -> G e. Mnd ) |
| 10 | 6 | adantr | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ y e. I ) -> I e. V ) |
| 11 | 7 | adantr | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ y e. I ) -> A : I --> B ) |
| 12 | simpr | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ y e. I ) -> y e. I ) |
|
| 13 | 1 2 4 9 10 11 3 12 | frmdup2 | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ y e. I ) -> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ` ( U ` y ) ) = ( A ` y ) ) |
| 14 | 13 | mpteq2dva | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( y e. I |-> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ` ( U ` y ) ) ) = ( y e. I |-> ( A ` y ) ) ) |
| 15 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 16 | 15 2 | mhmf | |- ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) e. ( M MndHom G ) -> ( x e. Word I |-> ( G gsum ( A o. x ) ) ) : ( Base ` M ) --> B ) |
| 17 | 8 16 | syl | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( x e. Word I |-> ( G gsum ( A o. x ) ) ) : ( Base ` M ) --> B ) |
| 18 | 3 | vrmdf | |- ( I e. V -> U : I --> Word I ) |
| 19 | 18 | 3ad2ant2 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> U : I --> Word I ) |
| 20 | 1 15 | frmdbas | |- ( I e. V -> ( Base ` M ) = Word I ) |
| 21 | 20 | 3ad2ant2 | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( Base ` M ) = Word I ) |
| 22 | 21 | feq3d | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( U : I --> ( Base ` M ) <-> U : I --> Word I ) ) |
| 23 | 19 22 | mpbird | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> U : I --> ( Base ` M ) ) |
| 24 | fcompt | |- ( ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) : ( Base ` M ) --> B /\ U : I --> ( Base ` M ) ) -> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) o. U ) = ( y e. I |-> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ` ( U ` y ) ) ) ) |
|
| 25 | 17 23 24 | syl2anc | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) o. U ) = ( y e. I |-> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ` ( U ` y ) ) ) ) |
| 26 | 7 | feqmptd | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> A = ( y e. I |-> ( A ` y ) ) ) |
| 27 | 14 25 26 | 3eqtr4d | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) o. U ) = A ) |
| 28 | 1 2 3 | frmdup3lem | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ ( m e. ( M MndHom G ) /\ ( m o. U ) = A ) ) -> m = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ) |
| 29 | 28 | expr | |- ( ( ( G e. Mnd /\ I e. V /\ A : I --> B ) /\ m e. ( M MndHom G ) ) -> ( ( m o. U ) = A -> m = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ) ) |
| 30 | 29 | ralrimiva | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> A. m e. ( M MndHom G ) ( ( m o. U ) = A -> m = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ) ) |
| 31 | coeq1 | |- ( m = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) -> ( m o. U ) = ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) o. U ) ) |
|
| 32 | 31 | eqeq1d | |- ( m = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) -> ( ( m o. U ) = A <-> ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) o. U ) = A ) ) |
| 33 | 32 | eqreu | |- ( ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) e. ( M MndHom G ) /\ ( ( x e. Word I |-> ( G gsum ( A o. x ) ) ) o. U ) = A /\ A. m e. ( M MndHom G ) ( ( m o. U ) = A -> m = ( x e. Word I |-> ( G gsum ( A o. x ) ) ) ) ) -> E! m e. ( M MndHom G ) ( m o. U ) = A ) |
| 34 | 8 27 30 33 | syl3anc | |- ( ( G e. Mnd /\ I e. V /\ A : I --> B ) -> E! m e. ( M MndHom G ) ( m o. U ) = A ) |