This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a free module obtained by restricting the support set is a submodule. J is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmsslss.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmsslss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑌 ) | ||
| frlmsslss.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| frlmsslss.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| frlmsslss.c | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 𝐽 × { 0 } ) } | ||
| Assertion | frlmsslss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmsslss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑌 ) | |
| 3 | frlmsslss.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | frlmsslss.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | frlmsslss.c | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 𝐽 × { 0 } ) } | |
| 6 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝑅 ∈ Ring ) | |
| 7 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐼 ∈ 𝑉 ) | |
| 8 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐽 ⊆ 𝐼 ) | |
| 9 | 7 8 | ssexd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐽 ∈ V ) |
| 10 | eqid | ⊢ ( 𝑅 freeLMod 𝐽 ) = ( 𝑅 freeLMod 𝐽 ) | |
| 11 | 10 4 | frlm0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ V ) → ( 𝐽 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ) |
| 12 | 6 9 11 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝐽 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ) |
| 13 | 12 | eqeq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( ( 𝑥 ↾ 𝐽 ) = ( 𝐽 × { 0 } ) ↔ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ) ) |
| 14 | 13 | rabbidv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 𝐽 × { 0 } ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
| 15 | 5 14 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
| 16 | eqid | ⊢ ( Base ‘ ( 𝑅 freeLMod 𝐽 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐽 ) ) | |
| 17 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) | |
| 18 | 1 10 3 16 17 | frlmsplit2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) ∈ ( 𝑌 LMHom ( 𝑅 freeLMod 𝐽 ) ) ) |
| 19 | fvex | ⊢ ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ∈ V | |
| 20 | 17 | mptiniseg | ⊢ ( ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ∈ V → ( ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) “ { ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
| 21 | 19 20 | ax-mp | ⊢ ( ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) “ { ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } |
| 22 | 21 | eqcomi | ⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } = ( ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) “ { ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
| 23 | eqid | ⊢ ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) | |
| 24 | 22 23 2 | lmhmkerlss | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) ∈ ( 𝑌 LMHom ( 𝑅 freeLMod 𝐽 ) ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ∈ 𝑈 ) |
| 25 | 18 24 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ∈ 𝑈 ) |
| 26 | 15 25 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 ∈ 𝑈 ) |