This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The kernel of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmkerlss.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| lmhmkerlss.z | ⊢ 0 = ( 0g ‘ 𝑇 ) | ||
| lmhmkerlss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) | ||
| Assertion | lmhmkerlss | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmkerlss.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 2 | lmhmkerlss.z | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 3 | lmhmkerlss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) | |
| 4 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 5 | eqid | ⊢ ( LSubSp ‘ 𝑇 ) = ( LSubSp ‘ 𝑇 ) | |
| 6 | 2 5 | lsssn0 | ⊢ ( 𝑇 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑇 ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → { 0 } ∈ ( LSubSp ‘ 𝑇 ) ) |
| 8 | 3 5 | lmhmpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ { 0 } ∈ ( LSubSp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ { 0 } ) ∈ 𝑈 ) |
| 9 | 7 8 | mpdan | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ◡ 𝐹 “ { 0 } ) ∈ 𝑈 ) |
| 10 | 1 9 | eqeltrid | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾 ∈ 𝑈 ) |