This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a free module obtained by restricting the support set is a submodule. J is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmsslss.y | |- Y = ( R freeLMod I ) |
|
| frlmsslss.u | |- U = ( LSubSp ` Y ) |
||
| frlmsslss.b | |- B = ( Base ` Y ) |
||
| frlmsslss.z | |- .0. = ( 0g ` R ) |
||
| frlmsslss.c | |- C = { x e. B | ( x |` J ) = ( J X. { .0. } ) } |
||
| Assertion | frlmsslss | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss.y | |- Y = ( R freeLMod I ) |
|
| 2 | frlmsslss.u | |- U = ( LSubSp ` Y ) |
|
| 3 | frlmsslss.b | |- B = ( Base ` Y ) |
|
| 4 | frlmsslss.z | |- .0. = ( 0g ` R ) |
|
| 5 | frlmsslss.c | |- C = { x e. B | ( x |` J ) = ( J X. { .0. } ) } |
|
| 6 | simp1 | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> R e. Ring ) |
|
| 7 | simp2 | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> I e. V ) |
|
| 8 | simp3 | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> J C_ I ) |
|
| 9 | 7 8 | ssexd | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> J e. _V ) |
| 10 | eqid | |- ( R freeLMod J ) = ( R freeLMod J ) |
|
| 11 | 10 4 | frlm0 | |- ( ( R e. Ring /\ J e. _V ) -> ( J X. { .0. } ) = ( 0g ` ( R freeLMod J ) ) ) |
| 12 | 6 9 11 | syl2anc | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> ( J X. { .0. } ) = ( 0g ` ( R freeLMod J ) ) ) |
| 13 | 12 | eqeq2d | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> ( ( x |` J ) = ( J X. { .0. } ) <-> ( x |` J ) = ( 0g ` ( R freeLMod J ) ) ) ) |
| 14 | 13 | rabbidv | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> { x e. B | ( x |` J ) = ( J X. { .0. } ) } = { x e. B | ( x |` J ) = ( 0g ` ( R freeLMod J ) ) } ) |
| 15 | 5 14 | eqtrid | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C = { x e. B | ( x |` J ) = ( 0g ` ( R freeLMod J ) ) } ) |
| 16 | eqid | |- ( Base ` ( R freeLMod J ) ) = ( Base ` ( R freeLMod J ) ) |
|
| 17 | eqid | |- ( x e. B |-> ( x |` J ) ) = ( x e. B |-> ( x |` J ) ) |
|
| 18 | 1 10 3 16 17 | frlmsplit2 | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> ( x e. B |-> ( x |` J ) ) e. ( Y LMHom ( R freeLMod J ) ) ) |
| 19 | fvex | |- ( 0g ` ( R freeLMod J ) ) e. _V |
|
| 20 | 17 | mptiniseg | |- ( ( 0g ` ( R freeLMod J ) ) e. _V -> ( `' ( x e. B |-> ( x |` J ) ) " { ( 0g ` ( R freeLMod J ) ) } ) = { x e. B | ( x |` J ) = ( 0g ` ( R freeLMod J ) ) } ) |
| 21 | 19 20 | ax-mp | |- ( `' ( x e. B |-> ( x |` J ) ) " { ( 0g ` ( R freeLMod J ) ) } ) = { x e. B | ( x |` J ) = ( 0g ` ( R freeLMod J ) ) } |
| 22 | 21 | eqcomi | |- { x e. B | ( x |` J ) = ( 0g ` ( R freeLMod J ) ) } = ( `' ( x e. B |-> ( x |` J ) ) " { ( 0g ` ( R freeLMod J ) ) } ) |
| 23 | eqid | |- ( 0g ` ( R freeLMod J ) ) = ( 0g ` ( R freeLMod J ) ) |
|
| 24 | 22 23 2 | lmhmkerlss | |- ( ( x e. B |-> ( x |` J ) ) e. ( Y LMHom ( R freeLMod J ) ) -> { x e. B | ( x |` J ) = ( 0g ` ( R freeLMod J ) ) } e. U ) |
| 25 | 18 24 | syl | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> { x e. B | ( x |` J ) = ( 0g ` ( R freeLMod J ) ) } e. U ) |
| 26 | 15 25 | eqeltrd | |- ( ( R e. Ring /\ I e. V /\ J C_ I ) -> C e. U ) |