This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a free module obtained by restricting the support set is a submodule. J is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 23-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmsslss.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmsslss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑌 ) | ||
| frlmsslss.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| frlmsslss.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| frlmsslss2.c | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } | ||
| Assertion | frlmsslss2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmsslss.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmsslss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑌 ) | |
| 3 | frlmsslss.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | frlmsslss.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | frlmsslss2.c | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } | |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | 1 6 3 | frlmbasf | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 8 | 7 | 3ad2antl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 9 | 8 | ffnd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 Fn 𝐼 ) |
| 10 | simpl3 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐽 ⊆ 𝐼 ) | |
| 11 | undif | ⊢ ( 𝐽 ⊆ 𝐼 ↔ ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) | |
| 12 | 10 11 | sylib | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) |
| 13 | 12 | fneq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 Fn ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ↔ 𝑥 Fn 𝐼 ) ) |
| 14 | 9 13 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 Fn ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ) |
| 15 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 16 | 4 | fvexi | ⊢ 0 ∈ V |
| 17 | 16 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ V ) |
| 18 | disjdif | ⊢ ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ | |
| 19 | 18 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ ) |
| 20 | fnsuppres | ⊢ ( ( 𝑥 Fn ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 0 ∈ V ) ∧ ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ ) → ( ( 𝑥 supp 0 ) ⊆ 𝐽 ↔ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) ) ) | |
| 21 | 14 15 17 19 20 | syl121anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 supp 0 ) ⊆ 𝐽 ↔ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) ) ) |
| 22 | 21 | rabbidva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ) |
| 23 | 5 22 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ) |
| 24 | difssd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) | |
| 25 | eqid | ⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } | |
| 26 | 1 2 3 4 25 | frlmsslss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ∈ 𝑈 ) |
| 27 | 24 26 | syld3an3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝐼 ∖ 𝐽 ) × { 0 } ) } ∈ 𝑈 ) |
| 28 | 23 27 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 ∈ 𝑈 ) |