This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 23-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmelbas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | ||
| frlmelbas.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| frlmelbas.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| Assertion | frlmelbas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 𝑋 finSupp 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmelbas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | |
| 3 | frlmelbas.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | frlmelbas.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 5 | eqid | ⊢ { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } = { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } | |
| 6 | 1 2 3 5 | frlmbas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } = ( Base ‘ 𝐹 ) ) |
| 7 | 4 6 | eqtr4id | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐵 = { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } ) |
| 8 | 7 | eleq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } ) ) |
| 9 | breq1 | ⊢ ( 𝑘 = 𝑋 → ( 𝑘 finSupp 0 ↔ 𝑋 finSupp 0 ) ) | |
| 10 | 9 | elrab | ⊢ ( 𝑋 ∈ { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } ↔ ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 𝑋 finSupp 0 ) ) |
| 11 | 8 10 | bitrdi | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 𝑋 finSupp 0 ) ) ) |