This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the direct sum module using the fndmin abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmbas2.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| dsmmbas2.b | ⊢ 𝐵 = { 𝑓 ∈ ( Base ‘ 𝑃 ) ∣ dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin } | ||
| Assertion | dsmmbas2 | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → 𝐵 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmbas2.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | dsmmbas2.b | ⊢ 𝐵 = { 𝑓 ∈ ( Base ‘ 𝑃 ) ∣ dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin } | |
| 3 | 1 | fveq2i | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) ) |
| 4 | 3 | rabeqi | ⊢ { 𝑓 ∈ ( Base ‘ 𝑃 ) ∣ dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin } = { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin } |
| 5 | simpll | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → 𝑅 Fn 𝐼 ) | |
| 6 | fvco2 | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 8 | 7 | neeq2d | ⊢ ( ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) ≠ ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 9 | 8 | rabbidva | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → { 𝑥 ∈ 𝐼 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐼 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
| 10 | eqid | ⊢ ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs 𝑅 ) | |
| 11 | eqid | ⊢ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) ) | |
| 12 | reldmprds | ⊢ Rel dom Xs | |
| 13 | 10 11 12 | strov2rcl | ⊢ ( 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) → 𝑆 ∈ V ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → 𝑆 ∈ V ) |
| 15 | simplr | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → 𝐼 ∈ 𝑉 ) | |
| 16 | simpr | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) | |
| 17 | 10 11 14 15 5 16 | prdsbasfn | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → 𝑓 Fn 𝐼 ) |
| 18 | fn0g | ⊢ 0g Fn V | |
| 19 | dffn2 | ⊢ ( 0g Fn V ↔ 0g : V ⟶ V ) | |
| 20 | 18 19 | mpbi | ⊢ 0g : V ⟶ V |
| 21 | dffn2 | ⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 : 𝐼 ⟶ V ) | |
| 22 | 21 | biimpi | ⊢ ( 𝑅 Fn 𝐼 → 𝑅 : 𝐼 ⟶ V ) |
| 23 | fco | ⊢ ( ( 0g : V ⟶ V ∧ 𝑅 : 𝐼 ⟶ V ) → ( 0g ∘ 𝑅 ) : 𝐼 ⟶ V ) | |
| 24 | 20 22 23 | sylancr | ⊢ ( 𝑅 Fn 𝐼 → ( 0g ∘ 𝑅 ) : 𝐼 ⟶ V ) |
| 25 | 24 | ffnd | ⊢ ( 𝑅 Fn 𝐼 → ( 0g ∘ 𝑅 ) Fn 𝐼 ) |
| 26 | 5 25 | syl | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → ( 0g ∘ 𝑅 ) Fn 𝐼 ) |
| 27 | fndmdif | ⊢ ( ( 𝑓 Fn 𝐼 ∧ ( 0g ∘ 𝑅 ) Fn 𝐼 ) → dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) } ) | |
| 28 | 17 26 27 | syl2anc | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) } ) |
| 29 | fndm | ⊢ ( 𝑅 Fn 𝐼 → dom 𝑅 = 𝐼 ) | |
| 30 | 29 | rabeqdv | ⊢ ( 𝑅 Fn 𝐼 → { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } = { 𝑥 ∈ 𝐼 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
| 31 | 5 30 | syl | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } = { 𝑥 ∈ 𝐼 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
| 32 | 9 28 31 | 3eqtr4d | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) = { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
| 33 | 32 | eleq1d | ⊢ ( ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) → ( dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin ↔ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) |
| 34 | 33 | rabbidva | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin } = { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } ) |
| 35 | 4 34 | eqtrid | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → { 𝑓 ∈ ( Base ‘ 𝑃 ) ∣ dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin } = { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } ) |
| 36 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → 𝑅 ∈ V ) | |
| 37 | eqid | ⊢ { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } = { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } | |
| 38 | 37 | dsmmbase | ⊢ ( 𝑅 ∈ V → { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| 39 | 36 38 | syl | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → { 𝑓 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑓 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| 40 | 35 39 | eqtrd | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → { 𝑓 ∈ ( Base ‘ 𝑃 ) ∣ dom ( 𝑓 ∖ ( 0g ∘ 𝑅 ) ) ∈ Fin } = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| 41 | 2 40 | eqtrid | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → 𝐵 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |