This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | ||
| frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | ||
| frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | ||
| frgpuptinv.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| Assertion | frgpuptinv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐼 × 2o ) ) → ( 𝑇 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 2 | frgpup.n | ⊢ 𝑁 = ( invg ‘ 𝐻 ) | |
| 3 | frgpup.t | ⊢ 𝑇 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 4 | frgpup.h | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) | |
| 5 | frgpup.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | frgpup.a | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) | |
| 7 | frgpuptinv.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 8 | elxp2 | ⊢ ( 𝐴 ∈ ( 𝐼 × 2o ) ↔ ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 2o 𝐴 = 〈 𝑎 , 𝑏 〉 ) | |
| 9 | 7 | efgmval | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 𝑎 𝑀 𝑏 ) = 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) ) → ( 𝑎 𝑀 𝑏 ) = 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) ) → ( 𝑇 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( 𝑇 ‘ 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) ) |
| 12 | df-ov | ⊢ ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑇 ‘ 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) | |
| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) ) → ( 𝑇 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) ) |
| 14 | elpri | ⊢ ( 𝑏 ∈ { ∅ , 1o } → ( 𝑏 = ∅ ∨ 𝑏 = 1o ) ) | |
| 15 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 16 | 14 15 | eleq2s | ⊢ ( 𝑏 ∈ 2o → ( 𝑏 = ∅ ∨ 𝑏 = 1o ) ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ 𝐼 ) | |
| 18 | 1oex | ⊢ 1o ∈ V | |
| 19 | 18 | prid2 | ⊢ 1o ∈ { ∅ , 1o } |
| 20 | 19 15 | eleqtrri | ⊢ 1o ∈ 2o |
| 21 | 1n0 | ⊢ 1o ≠ ∅ | |
| 22 | neeq1 | ⊢ ( 𝑧 = 1o → ( 𝑧 ≠ ∅ ↔ 1o ≠ ∅ ) ) | |
| 23 | 21 22 | mpbiri | ⊢ ( 𝑧 = 1o → 𝑧 ≠ ∅ ) |
| 24 | ifnefalse | ⊢ ( 𝑧 ≠ ∅ → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑧 = 1o → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | fveq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 27 | 26 | fveq2d | ⊢ ( 𝑦 = 𝑎 → ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 28 | 25 27 | sylan9eqr | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑧 = 1o ) → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 29 | fvex | ⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑎 ) ) ∈ V | |
| 30 | 28 3 29 | ovmpoa | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 1o ∈ 2o ) → ( 𝑎 𝑇 1o ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 31 | 17 20 30 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑎 𝑇 1o ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 32 | 0ex | ⊢ ∅ ∈ V | |
| 33 | 32 | prid1 | ⊢ ∅ ∈ { ∅ , 1o } |
| 34 | 33 15 | eleqtrri | ⊢ ∅ ∈ 2o |
| 35 | iftrue | ⊢ ( 𝑧 = ∅ → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 36 | 35 26 | sylan9eqr | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑧 = ∅ ) → if ( 𝑧 = ∅ , ( 𝐹 ‘ 𝑦 ) , ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝐹 ‘ 𝑎 ) ) |
| 37 | fvex | ⊢ ( 𝐹 ‘ 𝑎 ) ∈ V | |
| 38 | 36 3 37 | ovmpoa | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ ∅ ∈ 2o ) → ( 𝑎 𝑇 ∅ ) = ( 𝐹 ‘ 𝑎 ) ) |
| 39 | 17 34 38 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑎 𝑇 ∅ ) = ( 𝐹 ‘ 𝑎 ) ) |
| 40 | 39 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝑎 𝑇 ∅ ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 41 | 31 40 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑎 𝑇 1o ) = ( 𝑁 ‘ ( 𝑎 𝑇 ∅ ) ) ) |
| 42 | difeq2 | ⊢ ( 𝑏 = ∅ → ( 1o ∖ 𝑏 ) = ( 1o ∖ ∅ ) ) | |
| 43 | dif0 | ⊢ ( 1o ∖ ∅ ) = 1o | |
| 44 | 42 43 | eqtrdi | ⊢ ( 𝑏 = ∅ → ( 1o ∖ 𝑏 ) = 1o ) |
| 45 | 44 | oveq2d | ⊢ ( 𝑏 = ∅ → ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑎 𝑇 1o ) ) |
| 46 | oveq2 | ⊢ ( 𝑏 = ∅ → ( 𝑎 𝑇 𝑏 ) = ( 𝑎 𝑇 ∅ ) ) | |
| 47 | 46 | fveq2d | ⊢ ( 𝑏 = ∅ → ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 ∅ ) ) ) |
| 48 | 45 47 | eqeq12d | ⊢ ( 𝑏 = ∅ → ( ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ↔ ( 𝑎 𝑇 1o ) = ( 𝑁 ‘ ( 𝑎 𝑇 ∅ ) ) ) ) |
| 49 | 41 48 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑏 = ∅ → ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) ) |
| 50 | 41 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝑎 𝑇 1o ) ) = ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑎 𝑇 ∅ ) ) ) ) |
| 51 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) |
| 52 | 39 51 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑎 𝑇 ∅ ) ∈ 𝐵 ) |
| 53 | 1 2 | grpinvinv | ⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑎 𝑇 ∅ ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑎 𝑇 ∅ ) ) ) = ( 𝑎 𝑇 ∅ ) ) |
| 54 | 4 52 53 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑎 𝑇 ∅ ) ) ) = ( 𝑎 𝑇 ∅ ) ) |
| 55 | 50 54 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑎 𝑇 ∅ ) = ( 𝑁 ‘ ( 𝑎 𝑇 1o ) ) ) |
| 56 | difeq2 | ⊢ ( 𝑏 = 1o → ( 1o ∖ 𝑏 ) = ( 1o ∖ 1o ) ) | |
| 57 | difid | ⊢ ( 1o ∖ 1o ) = ∅ | |
| 58 | 56 57 | eqtrdi | ⊢ ( 𝑏 = 1o → ( 1o ∖ 𝑏 ) = ∅ ) |
| 59 | 58 | oveq2d | ⊢ ( 𝑏 = 1o → ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑎 𝑇 ∅ ) ) |
| 60 | oveq2 | ⊢ ( 𝑏 = 1o → ( 𝑎 𝑇 𝑏 ) = ( 𝑎 𝑇 1o ) ) | |
| 61 | 60 | fveq2d | ⊢ ( 𝑏 = 1o → ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 1o ) ) ) |
| 62 | 59 61 | eqeq12d | ⊢ ( 𝑏 = 1o → ( ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ↔ ( 𝑎 𝑇 ∅ ) = ( 𝑁 ‘ ( 𝑎 𝑇 1o ) ) ) ) |
| 63 | 55 62 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑏 = 1o → ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) ) |
| 64 | 49 63 | jaod | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝑏 = ∅ ∨ 𝑏 = 1o ) → ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) ) |
| 65 | 16 64 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑏 ∈ 2o → ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) ) |
| 66 | 65 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) ) → ( 𝑎 𝑇 ( 1o ∖ 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) |
| 67 | 13 66 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) ) → ( 𝑇 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) |
| 68 | fveq2 | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 〈 𝑎 , 𝑏 〉 ) ) | |
| 69 | df-ov | ⊢ ( 𝑎 𝑀 𝑏 ) = ( 𝑀 ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 70 | 68 69 | eqtr4di | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑀 ‘ 𝐴 ) = ( 𝑎 𝑀 𝑏 ) ) |
| 71 | 70 | fveq2d | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑇 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑇 ‘ ( 𝑎 𝑀 𝑏 ) ) ) |
| 72 | fveq2 | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 〈 𝑎 , 𝑏 〉 ) ) | |
| 73 | df-ov | ⊢ ( 𝑎 𝑇 𝑏 ) = ( 𝑇 ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 74 | 72 73 | eqtr4di | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑇 ‘ 𝐴 ) = ( 𝑎 𝑇 𝑏 ) ) |
| 75 | 74 | fveq2d | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑁 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) |
| 76 | 71 75 | eqeq12d | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑇 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝐴 ) ) ↔ ( 𝑇 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 𝑇 𝑏 ) ) ) ) |
| 77 | 67 76 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) ) → ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑇 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 78 | 77 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 2o 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑇 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 79 | 8 78 | biimtrid | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐼 × 2o ) → ( 𝑇 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 80 | 79 | imp | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐼 × 2o ) ) → ( 𝑇 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |