This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | |- B = ( Base ` H ) |
|
| frgpup.n | |- N = ( invg ` H ) |
||
| frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
||
| frgpup.h | |- ( ph -> H e. Grp ) |
||
| frgpup.i | |- ( ph -> I e. V ) |
||
| frgpup.a | |- ( ph -> F : I --> B ) |
||
| frgpuptinv.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| Assertion | frgpuptinv | |- ( ( ph /\ A e. ( I X. 2o ) ) -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | |- B = ( Base ` H ) |
|
| 2 | frgpup.n | |- N = ( invg ` H ) |
|
| 3 | frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
|
| 4 | frgpup.h | |- ( ph -> H e. Grp ) |
|
| 5 | frgpup.i | |- ( ph -> I e. V ) |
|
| 6 | frgpup.a | |- ( ph -> F : I --> B ) |
|
| 7 | frgpuptinv.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 8 | elxp2 | |- ( A e. ( I X. 2o ) <-> E. a e. I E. b e. 2o A = <. a , b >. ) |
|
| 9 | 7 | efgmval | |- ( ( a e. I /\ b e. 2o ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) |
| 10 | 9 | adantl | |- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) |
| 11 | 10 | fveq2d | |- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( T ` <. a , ( 1o \ b ) >. ) ) |
| 12 | df-ov | |- ( a T ( 1o \ b ) ) = ( T ` <. a , ( 1o \ b ) >. ) |
|
| 13 | 11 12 | eqtr4di | |- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( a T ( 1o \ b ) ) ) |
| 14 | elpri | |- ( b e. { (/) , 1o } -> ( b = (/) \/ b = 1o ) ) |
|
| 15 | df2o3 | |- 2o = { (/) , 1o } |
|
| 16 | 14 15 | eleq2s | |- ( b e. 2o -> ( b = (/) \/ b = 1o ) ) |
| 17 | simpr | |- ( ( ph /\ a e. I ) -> a e. I ) |
|
| 18 | 1oex | |- 1o e. _V |
|
| 19 | 18 | prid2 | |- 1o e. { (/) , 1o } |
| 20 | 19 15 | eleqtrri | |- 1o e. 2o |
| 21 | 1n0 | |- 1o =/= (/) |
|
| 22 | neeq1 | |- ( z = 1o -> ( z =/= (/) <-> 1o =/= (/) ) ) |
|
| 23 | 21 22 | mpbiri | |- ( z = 1o -> z =/= (/) ) |
| 24 | ifnefalse | |- ( z =/= (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` y ) ) ) |
|
| 25 | 23 24 | syl | |- ( z = 1o -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` y ) ) ) |
| 26 | fveq2 | |- ( y = a -> ( F ` y ) = ( F ` a ) ) |
|
| 27 | 26 | fveq2d | |- ( y = a -> ( N ` ( F ` y ) ) = ( N ` ( F ` a ) ) ) |
| 28 | 25 27 | sylan9eqr | |- ( ( y = a /\ z = 1o ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` a ) ) ) |
| 29 | fvex | |- ( N ` ( F ` a ) ) e. _V |
|
| 30 | 28 3 29 | ovmpoa | |- ( ( a e. I /\ 1o e. 2o ) -> ( a T 1o ) = ( N ` ( F ` a ) ) ) |
| 31 | 17 20 30 | sylancl | |- ( ( ph /\ a e. I ) -> ( a T 1o ) = ( N ` ( F ` a ) ) ) |
| 32 | 0ex | |- (/) e. _V |
|
| 33 | 32 | prid1 | |- (/) e. { (/) , 1o } |
| 34 | 33 15 | eleqtrri | |- (/) e. 2o |
| 35 | iftrue | |- ( z = (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` y ) ) |
|
| 36 | 35 26 | sylan9eqr | |- ( ( y = a /\ z = (/) ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` a ) ) |
| 37 | fvex | |- ( F ` a ) e. _V |
|
| 38 | 36 3 37 | ovmpoa | |- ( ( a e. I /\ (/) e. 2o ) -> ( a T (/) ) = ( F ` a ) ) |
| 39 | 17 34 38 | sylancl | |- ( ( ph /\ a e. I ) -> ( a T (/) ) = ( F ` a ) ) |
| 40 | 39 | fveq2d | |- ( ( ph /\ a e. I ) -> ( N ` ( a T (/) ) ) = ( N ` ( F ` a ) ) ) |
| 41 | 31 40 | eqtr4d | |- ( ( ph /\ a e. I ) -> ( a T 1o ) = ( N ` ( a T (/) ) ) ) |
| 42 | difeq2 | |- ( b = (/) -> ( 1o \ b ) = ( 1o \ (/) ) ) |
|
| 43 | dif0 | |- ( 1o \ (/) ) = 1o |
|
| 44 | 42 43 | eqtrdi | |- ( b = (/) -> ( 1o \ b ) = 1o ) |
| 45 | 44 | oveq2d | |- ( b = (/) -> ( a T ( 1o \ b ) ) = ( a T 1o ) ) |
| 46 | oveq2 | |- ( b = (/) -> ( a T b ) = ( a T (/) ) ) |
|
| 47 | 46 | fveq2d | |- ( b = (/) -> ( N ` ( a T b ) ) = ( N ` ( a T (/) ) ) ) |
| 48 | 45 47 | eqeq12d | |- ( b = (/) -> ( ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) <-> ( a T 1o ) = ( N ` ( a T (/) ) ) ) ) |
| 49 | 41 48 | syl5ibrcom | |- ( ( ph /\ a e. I ) -> ( b = (/) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 50 | 41 | fveq2d | |- ( ( ph /\ a e. I ) -> ( N ` ( a T 1o ) ) = ( N ` ( N ` ( a T (/) ) ) ) ) |
| 51 | 6 | ffvelcdmda | |- ( ( ph /\ a e. I ) -> ( F ` a ) e. B ) |
| 52 | 39 51 | eqeltrd | |- ( ( ph /\ a e. I ) -> ( a T (/) ) e. B ) |
| 53 | 1 2 | grpinvinv | |- ( ( H e. Grp /\ ( a T (/) ) e. B ) -> ( N ` ( N ` ( a T (/) ) ) ) = ( a T (/) ) ) |
| 54 | 4 52 53 | syl2an2r | |- ( ( ph /\ a e. I ) -> ( N ` ( N ` ( a T (/) ) ) ) = ( a T (/) ) ) |
| 55 | 50 54 | eqtr2d | |- ( ( ph /\ a e. I ) -> ( a T (/) ) = ( N ` ( a T 1o ) ) ) |
| 56 | difeq2 | |- ( b = 1o -> ( 1o \ b ) = ( 1o \ 1o ) ) |
|
| 57 | difid | |- ( 1o \ 1o ) = (/) |
|
| 58 | 56 57 | eqtrdi | |- ( b = 1o -> ( 1o \ b ) = (/) ) |
| 59 | 58 | oveq2d | |- ( b = 1o -> ( a T ( 1o \ b ) ) = ( a T (/) ) ) |
| 60 | oveq2 | |- ( b = 1o -> ( a T b ) = ( a T 1o ) ) |
|
| 61 | 60 | fveq2d | |- ( b = 1o -> ( N ` ( a T b ) ) = ( N ` ( a T 1o ) ) ) |
| 62 | 59 61 | eqeq12d | |- ( b = 1o -> ( ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) <-> ( a T (/) ) = ( N ` ( a T 1o ) ) ) ) |
| 63 | 55 62 | syl5ibrcom | |- ( ( ph /\ a e. I ) -> ( b = 1o -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 64 | 49 63 | jaod | |- ( ( ph /\ a e. I ) -> ( ( b = (/) \/ b = 1o ) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 65 | 16 64 | syl5 | |- ( ( ph /\ a e. I ) -> ( b e. 2o -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 66 | 65 | impr | |- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) |
| 67 | 13 66 | eqtrd | |- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( N ` ( a T b ) ) ) |
| 68 | fveq2 | |- ( A = <. a , b >. -> ( M ` A ) = ( M ` <. a , b >. ) ) |
|
| 69 | df-ov | |- ( a M b ) = ( M ` <. a , b >. ) |
|
| 70 | 68 69 | eqtr4di | |- ( A = <. a , b >. -> ( M ` A ) = ( a M b ) ) |
| 71 | 70 | fveq2d | |- ( A = <. a , b >. -> ( T ` ( M ` A ) ) = ( T ` ( a M b ) ) ) |
| 72 | fveq2 | |- ( A = <. a , b >. -> ( T ` A ) = ( T ` <. a , b >. ) ) |
|
| 73 | df-ov | |- ( a T b ) = ( T ` <. a , b >. ) |
|
| 74 | 72 73 | eqtr4di | |- ( A = <. a , b >. -> ( T ` A ) = ( a T b ) ) |
| 75 | 74 | fveq2d | |- ( A = <. a , b >. -> ( N ` ( T ` A ) ) = ( N ` ( a T b ) ) ) |
| 76 | 71 75 | eqeq12d | |- ( A = <. a , b >. -> ( ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) <-> ( T ` ( a M b ) ) = ( N ` ( a T b ) ) ) ) |
| 77 | 67 76 | syl5ibrcom | |- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( A = <. a , b >. -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) |
| 78 | 77 | rexlimdvva | |- ( ph -> ( E. a e. I E. b e. 2o A = <. a , b >. -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) |
| 79 | 8 78 | biimtrid | |- ( ph -> ( A e. ( I X. 2o ) -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) |
| 80 | 79 | imp | |- ( ( ph /\ A e. ( I X. 2o ) ) -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) |