This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgmval.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| Assertion | efgmval | ⊢ ( ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o ) → ( 𝐴 𝑀 𝐵 ) = 〈 𝐴 , ( 1o ∖ 𝐵 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgmval.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 2 | opeq1 | ⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 = 〈 𝐴 , ( 1o ∖ 𝑏 ) 〉 ) | |
| 3 | difeq2 | ⊢ ( 𝑏 = 𝐵 → ( 1o ∖ 𝑏 ) = ( 1o ∖ 𝐵 ) ) | |
| 4 | 3 | opeq2d | ⊢ ( 𝑏 = 𝐵 → 〈 𝐴 , ( 1o ∖ 𝑏 ) 〉 = 〈 𝐴 , ( 1o ∖ 𝐵 ) 〉 ) |
| 5 | opeq1 | ⊢ ( 𝑦 = 𝑎 → 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 = 〈 𝑎 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 6 | difeq2 | ⊢ ( 𝑧 = 𝑏 → ( 1o ∖ 𝑧 ) = ( 1o ∖ 𝑏 ) ) | |
| 7 | 6 | opeq2d | ⊢ ( 𝑧 = 𝑏 → 〈 𝑎 , ( 1o ∖ 𝑧 ) 〉 = 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) |
| 8 | 5 7 | cbvmpov | ⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) = ( 𝑎 ∈ 𝐼 , 𝑏 ∈ 2o ↦ 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) |
| 9 | 1 8 | eqtri | ⊢ 𝑀 = ( 𝑎 ∈ 𝐼 , 𝑏 ∈ 2o ↦ 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) |
| 10 | opex | ⊢ 〈 𝐴 , ( 1o ∖ 𝐵 ) 〉 ∈ V | |
| 11 | 2 4 9 10 | ovmpo | ⊢ ( ( 𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 2o ) → ( 𝐴 𝑀 𝐵 ) = 〈 𝐴 , ( 1o ∖ 𝐵 ) 〉 ) |