This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresaun | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐶 ) | |
| 2 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 3 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) : ( 𝐴 ∩ 𝐵 ) ⟶ 𝐶 ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) : ( 𝐴 ∩ 𝐵 ) ⟶ 𝐶 ) |
| 5 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 6 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) ⟶ 𝐶 ) | |
| 7 | 1 5 6 | sylancl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) ⟶ 𝐶 ) |
| 8 | simp2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐺 : 𝐵 ⟶ 𝐶 ) | |
| 9 | difss | ⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 | |
| 10 | fssres | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) → ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) : ( 𝐵 ∖ 𝐴 ) ⟶ 𝐶 ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) : ( 𝐵 ∖ 𝐴 ) ⟶ 𝐶 ) |
| 12 | indifdir | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 13 | disjdif | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ | |
| 14 | 13 | difeq1i | ⊢ ( ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ( ∅ ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) |
| 15 | 0dif | ⊢ ( ∅ ∖ ( 𝐵 ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ∅ | |
| 16 | 12 14 15 | 3eqtri | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
| 17 | 16 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
| 18 | 7 11 17 | fun2d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) : ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ⟶ 𝐶 ) |
| 19 | indi | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 20 | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 21 | disjdif | ⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ | |
| 22 | 21 | ineq2i | ⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐴 ∩ ∅ ) |
| 23 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
| 24 | 20 22 23 | 3eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
| 25 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 26 | 25 | ineq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∩ ( 𝐵 ∖ 𝐴 ) ) |
| 27 | inass | ⊢ ( ( 𝐵 ∩ 𝐴 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 28 | 13 | ineq2i | ⊢ ( 𝐵 ∩ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐵 ∩ ∅ ) |
| 29 | in0 | ⊢ ( 𝐵 ∩ ∅ ) = ∅ | |
| 30 | 27 28 29 | 3eqtri | ⊢ ( ( 𝐵 ∩ 𝐴 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
| 31 | 26 30 | eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
| 32 | 24 31 | uneq12i | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐵 ∖ 𝐴 ) ) ) = ( ∅ ∪ ∅ ) |
| 33 | un0 | ⊢ ( ∅ ∪ ∅ ) = ∅ | |
| 34 | 19 32 33 | 3eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ∅ |
| 35 | 34 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∩ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ∅ ) |
| 36 | 4 18 35 | fun2d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) ⟶ 𝐶 ) |
| 37 | un12 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 38 | 25 | uneq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 39 | inundif | ⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 | |
| 40 | 38 39 | eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
| 41 | 40 | uneq2i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
| 42 | undif1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) | |
| 43 | 37 41 42 | 3eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐴 ∪ 𝐵 ) |
| 44 | 43 | feq2i | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) ⟶ 𝐶 ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
| 45 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 → 𝐹 Fn 𝐴 ) | |
| 46 | ffn | ⊢ ( 𝐺 : 𝐵 ⟶ 𝐶 → 𝐺 Fn 𝐵 ) | |
| 47 | id | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 48 | resasplit | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) | |
| 49 | 45 46 47 48 | syl3an | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) = ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 50 | 49 | feq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
| 51 | 44 50 | bitr4id | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∪ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ∪ ( 𝐺 ↾ ( 𝐵 ∖ 𝐴 ) ) ) ) : ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) ) ⟶ 𝐶 ↔ ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
| 52 | 36 51 | mpbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |