This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresaun | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) : ( A u. B ) --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> F : A --> C ) |
|
| 2 | inss1 | |- ( A i^i B ) C_ A |
|
| 3 | fssres | |- ( ( F : A --> C /\ ( A i^i B ) C_ A ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) --> C ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) --> C ) |
| 5 | difss | |- ( A \ B ) C_ A |
|
| 6 | fssres | |- ( ( F : A --> C /\ ( A \ B ) C_ A ) -> ( F |` ( A \ B ) ) : ( A \ B ) --> C ) |
|
| 7 | 1 5 6 | sylancl | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A \ B ) ) : ( A \ B ) --> C ) |
| 8 | simp2 | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> G : B --> C ) |
|
| 9 | difss | |- ( B \ A ) C_ B |
|
| 10 | fssres | |- ( ( G : B --> C /\ ( B \ A ) C_ B ) -> ( G |` ( B \ A ) ) : ( B \ A ) --> C ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( G |` ( B \ A ) ) : ( B \ A ) --> C ) |
| 12 | indifdir | |- ( ( A \ B ) i^i ( B \ A ) ) = ( ( A i^i ( B \ A ) ) \ ( B i^i ( B \ A ) ) ) |
|
| 13 | disjdif | |- ( A i^i ( B \ A ) ) = (/) |
|
| 14 | 13 | difeq1i | |- ( ( A i^i ( B \ A ) ) \ ( B i^i ( B \ A ) ) ) = ( (/) \ ( B i^i ( B \ A ) ) ) |
| 15 | 0dif | |- ( (/) \ ( B i^i ( B \ A ) ) ) = (/) |
|
| 16 | 12 14 15 | 3eqtri | |- ( ( A \ B ) i^i ( B \ A ) ) = (/) |
| 17 | 16 | a1i | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( A \ B ) i^i ( B \ A ) ) = (/) ) |
| 18 | 7 11 17 | fun2d | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) : ( ( A \ B ) u. ( B \ A ) ) --> C ) |
| 19 | indi | |- ( ( A i^i B ) i^i ( ( A \ B ) u. ( B \ A ) ) ) = ( ( ( A i^i B ) i^i ( A \ B ) ) u. ( ( A i^i B ) i^i ( B \ A ) ) ) |
|
| 20 | inass | |- ( ( A i^i B ) i^i ( A \ B ) ) = ( A i^i ( B i^i ( A \ B ) ) ) |
|
| 21 | disjdif | |- ( B i^i ( A \ B ) ) = (/) |
|
| 22 | 21 | ineq2i | |- ( A i^i ( B i^i ( A \ B ) ) ) = ( A i^i (/) ) |
| 23 | in0 | |- ( A i^i (/) ) = (/) |
|
| 24 | 20 22 23 | 3eqtri | |- ( ( A i^i B ) i^i ( A \ B ) ) = (/) |
| 25 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 26 | 25 | ineq1i | |- ( ( A i^i B ) i^i ( B \ A ) ) = ( ( B i^i A ) i^i ( B \ A ) ) |
| 27 | inass | |- ( ( B i^i A ) i^i ( B \ A ) ) = ( B i^i ( A i^i ( B \ A ) ) ) |
|
| 28 | 13 | ineq2i | |- ( B i^i ( A i^i ( B \ A ) ) ) = ( B i^i (/) ) |
| 29 | in0 | |- ( B i^i (/) ) = (/) |
|
| 30 | 27 28 29 | 3eqtri | |- ( ( B i^i A ) i^i ( B \ A ) ) = (/) |
| 31 | 26 30 | eqtri | |- ( ( A i^i B ) i^i ( B \ A ) ) = (/) |
| 32 | 24 31 | uneq12i | |- ( ( ( A i^i B ) i^i ( A \ B ) ) u. ( ( A i^i B ) i^i ( B \ A ) ) ) = ( (/) u. (/) ) |
| 33 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 34 | 19 32 33 | 3eqtri | |- ( ( A i^i B ) i^i ( ( A \ B ) u. ( B \ A ) ) ) = (/) |
| 35 | 34 | a1i | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( A i^i B ) i^i ( ( A \ B ) u. ( B \ A ) ) ) = (/) ) |
| 36 | 4 18 35 | fun2d | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) --> C ) |
| 37 | un12 | |- ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) = ( ( A \ B ) u. ( ( A i^i B ) u. ( B \ A ) ) ) |
|
| 38 | 25 | uneq1i | |- ( ( A i^i B ) u. ( B \ A ) ) = ( ( B i^i A ) u. ( B \ A ) ) |
| 39 | inundif | |- ( ( B i^i A ) u. ( B \ A ) ) = B |
|
| 40 | 38 39 | eqtri | |- ( ( A i^i B ) u. ( B \ A ) ) = B |
| 41 | 40 | uneq2i | |- ( ( A \ B ) u. ( ( A i^i B ) u. ( B \ A ) ) ) = ( ( A \ B ) u. B ) |
| 42 | undif1 | |- ( ( A \ B ) u. B ) = ( A u. B ) |
|
| 43 | 37 41 42 | 3eqtri | |- ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) = ( A u. B ) |
| 44 | 43 | feq2i | |- ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) --> C <-> ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( A u. B ) --> C ) |
| 45 | ffn | |- ( F : A --> C -> F Fn A ) |
|
| 46 | ffn | |- ( G : B --> C -> G Fn B ) |
|
| 47 | id | |- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
|
| 48 | resasplit | |- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
|
| 49 | 45 46 47 48 | syl3an | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 50 | 49 | feq1d | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) : ( A u. B ) --> C <-> ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( A u. B ) --> C ) ) |
| 51 | 44 50 | bitr4id | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) --> C <-> ( F u. G ) : ( A u. B ) --> C ) ) |
| 52 | 36 51 | mpbid | |- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) : ( A u. B ) --> C ) |