This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| fpwwe2lem8.x | |- ( ph -> X W R ) |
||
| fpwwe2lem8.y | |- ( ph -> Y W S ) |
||
| fpwwe2lem8.m | |- M = OrdIso ( R , X ) |
||
| fpwwe2lem8.n | |- N = OrdIso ( S , Y ) |
||
| fpwwe2lem5.1 | |- ( ph -> B e. dom M ) |
||
| fpwwe2lem5.2 | |- ( ph -> B e. dom N ) |
||
| fpwwe2lem5.3 | |- ( ph -> ( M |` B ) = ( N |` B ) ) |
||
| Assertion | fpwwe2lem6 | |- ( ( ph /\ C R ( M ` B ) ) -> ( C S ( N ` B ) /\ ( D R ( M ` B ) -> ( C R D <-> C S D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | fpwwe2lem8.x | |- ( ph -> X W R ) |
|
| 5 | fpwwe2lem8.y | |- ( ph -> Y W S ) |
|
| 6 | fpwwe2lem8.m | |- M = OrdIso ( R , X ) |
|
| 7 | fpwwe2lem8.n | |- N = OrdIso ( S , Y ) |
|
| 8 | fpwwe2lem5.1 | |- ( ph -> B e. dom M ) |
|
| 9 | fpwwe2lem5.2 | |- ( ph -> B e. dom N ) |
|
| 10 | fpwwe2lem5.3 | |- ( ph -> ( M |` B ) = ( N |` B ) ) |
|
| 11 | 1 | relopabiv | |- Rel W |
| 12 | 11 | brrelex1i | |- ( Y W S -> Y e. _V ) |
| 13 | 5 12 | syl | |- ( ph -> Y e. _V ) |
| 14 | 1 2 | fpwwe2lem2 | |- ( ph -> ( Y W S <-> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) ) |
| 15 | 5 14 | mpbid | |- ( ph -> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) |
| 16 | 15 | simprld | |- ( ph -> S We Y ) |
| 17 | 7 | oiiso | |- ( ( Y e. _V /\ S We Y ) -> N Isom _E , S ( dom N , Y ) ) |
| 18 | 13 16 17 | syl2anc | |- ( ph -> N Isom _E , S ( dom N , Y ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> N Isom _E , S ( dom N , Y ) ) |
| 20 | isof1o | |- ( N Isom _E , S ( dom N , Y ) -> N : dom N -1-1-onto-> Y ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ C R ( M ` B ) ) -> N : dom N -1-1-onto-> Y ) |
| 22 | 1 2 3 4 5 6 7 8 9 10 | fpwwe2lem5 | |- ( ( ph /\ C R ( M ` B ) ) -> ( C e. X /\ C e. Y /\ ( `' M ` C ) = ( `' N ` C ) ) ) |
| 23 | 22 | simp2d | |- ( ( ph /\ C R ( M ` B ) ) -> C e. Y ) |
| 24 | f1ocnvfv2 | |- ( ( N : dom N -1-1-onto-> Y /\ C e. Y ) -> ( N ` ( `' N ` C ) ) = C ) |
|
| 25 | 21 23 24 | syl2anc | |- ( ( ph /\ C R ( M ` B ) ) -> ( N ` ( `' N ` C ) ) = C ) |
| 26 | 22 | simp3d | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) = ( `' N ` C ) ) |
| 27 | 11 | brrelex1i | |- ( X W R -> X e. _V ) |
| 28 | 4 27 | syl | |- ( ph -> X e. _V ) |
| 29 | 1 2 | fpwwe2lem2 | |- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
| 30 | 4 29 | mpbid | |- ( ph -> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) |
| 31 | 30 | simprld | |- ( ph -> R We X ) |
| 32 | 6 | oiiso | |- ( ( X e. _V /\ R We X ) -> M Isom _E , R ( dom M , X ) ) |
| 33 | 28 31 32 | syl2anc | |- ( ph -> M Isom _E , R ( dom M , X ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> M Isom _E , R ( dom M , X ) ) |
| 35 | isof1o | |- ( M Isom _E , R ( dom M , X ) -> M : dom M -1-1-onto-> X ) |
|
| 36 | 34 35 | syl | |- ( ( ph /\ C R ( M ` B ) ) -> M : dom M -1-1-onto-> X ) |
| 37 | 22 | simp1d | |- ( ( ph /\ C R ( M ` B ) ) -> C e. X ) |
| 38 | f1ocnvfv2 | |- ( ( M : dom M -1-1-onto-> X /\ C e. X ) -> ( M ` ( `' M ` C ) ) = C ) |
|
| 39 | 36 37 38 | syl2anc | |- ( ( ph /\ C R ( M ` B ) ) -> ( M ` ( `' M ` C ) ) = C ) |
| 40 | simpr | |- ( ( ph /\ C R ( M ` B ) ) -> C R ( M ` B ) ) |
|
| 41 | 39 40 | eqbrtrd | |- ( ( ph /\ C R ( M ` B ) ) -> ( M ` ( `' M ` C ) ) R ( M ` B ) ) |
| 42 | f1ocnv | |- ( M : dom M -1-1-onto-> X -> `' M : X -1-1-onto-> dom M ) |
|
| 43 | f1of | |- ( `' M : X -1-1-onto-> dom M -> `' M : X --> dom M ) |
|
| 44 | 36 42 43 | 3syl | |- ( ( ph /\ C R ( M ` B ) ) -> `' M : X --> dom M ) |
| 45 | 44 37 | ffvelcdmd | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) e. dom M ) |
| 46 | 8 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> B e. dom M ) |
| 47 | isorel | |- ( ( M Isom _E , R ( dom M , X ) /\ ( ( `' M ` C ) e. dom M /\ B e. dom M ) ) -> ( ( `' M ` C ) _E B <-> ( M ` ( `' M ` C ) ) R ( M ` B ) ) ) |
|
| 48 | 34 45 46 47 | syl12anc | |- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' M ` C ) _E B <-> ( M ` ( `' M ` C ) ) R ( M ` B ) ) ) |
| 49 | 41 48 | mpbird | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) _E B ) |
| 50 | 26 49 | eqbrtrrd | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' N ` C ) _E B ) |
| 51 | f1ocnv | |- ( N : dom N -1-1-onto-> Y -> `' N : Y -1-1-onto-> dom N ) |
|
| 52 | f1of | |- ( `' N : Y -1-1-onto-> dom N -> `' N : Y --> dom N ) |
|
| 53 | 21 51 52 | 3syl | |- ( ( ph /\ C R ( M ` B ) ) -> `' N : Y --> dom N ) |
| 54 | 53 23 | ffvelcdmd | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' N ` C ) e. dom N ) |
| 55 | 9 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> B e. dom N ) |
| 56 | isorel | |- ( ( N Isom _E , S ( dom N , Y ) /\ ( ( `' N ` C ) e. dom N /\ B e. dom N ) ) -> ( ( `' N ` C ) _E B <-> ( N ` ( `' N ` C ) ) S ( N ` B ) ) ) |
|
| 57 | 19 54 55 56 | syl12anc | |- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' N ` C ) _E B <-> ( N ` ( `' N ` C ) ) S ( N ` B ) ) ) |
| 58 | 50 57 | mpbid | |- ( ( ph /\ C R ( M ` B ) ) -> ( N ` ( `' N ` C ) ) S ( N ` B ) ) |
| 59 | 25 58 | eqbrtrrd | |- ( ( ph /\ C R ( M ` B ) ) -> C S ( N ` B ) ) |
| 60 | 26 | adantrr | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( `' M ` C ) = ( `' N ` C ) ) |
| 61 | 1 2 3 4 5 6 7 8 9 10 | fpwwe2lem5 | |- ( ( ph /\ D R ( M ` B ) ) -> ( D e. X /\ D e. Y /\ ( `' M ` D ) = ( `' N ` D ) ) ) |
| 62 | 61 | simp3d | |- ( ( ph /\ D R ( M ` B ) ) -> ( `' M ` D ) = ( `' N ` D ) ) |
| 63 | 62 | adantrl | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( `' M ` D ) = ( `' N ` D ) ) |
| 64 | 60 63 | breq12d | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( ( `' M ` C ) _E ( `' M ` D ) <-> ( `' N ` C ) _E ( `' N ` D ) ) ) |
| 65 | 33 | adantr | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> M Isom _E , R ( dom M , X ) ) |
| 66 | isocnv | |- ( M Isom _E , R ( dom M , X ) -> `' M Isom R , _E ( X , dom M ) ) |
|
| 67 | 65 66 | syl | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> `' M Isom R , _E ( X , dom M ) ) |
| 68 | 37 | adantrr | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> C e. X ) |
| 69 | 30 | simplrd | |- ( ph -> R C_ ( X X. X ) ) |
| 70 | 69 | ssbrd | |- ( ph -> ( D R ( M ` B ) -> D ( X X. X ) ( M ` B ) ) ) |
| 71 | 70 | imp | |- ( ( ph /\ D R ( M ` B ) ) -> D ( X X. X ) ( M ` B ) ) |
| 72 | brxp | |- ( D ( X X. X ) ( M ` B ) <-> ( D e. X /\ ( M ` B ) e. X ) ) |
|
| 73 | 72 | simplbi | |- ( D ( X X. X ) ( M ` B ) -> D e. X ) |
| 74 | 71 73 | syl | |- ( ( ph /\ D R ( M ` B ) ) -> D e. X ) |
| 75 | 74 | adantrl | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> D e. X ) |
| 76 | isorel | |- ( ( `' M Isom R , _E ( X , dom M ) /\ ( C e. X /\ D e. X ) ) -> ( C R D <-> ( `' M ` C ) _E ( `' M ` D ) ) ) |
|
| 77 | 67 68 75 76 | syl12anc | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( C R D <-> ( `' M ` C ) _E ( `' M ` D ) ) ) |
| 78 | 18 | adantr | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> N Isom _E , S ( dom N , Y ) ) |
| 79 | isocnv | |- ( N Isom _E , S ( dom N , Y ) -> `' N Isom S , _E ( Y , dom N ) ) |
|
| 80 | 78 79 | syl | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> `' N Isom S , _E ( Y , dom N ) ) |
| 81 | 23 | adantrr | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> C e. Y ) |
| 82 | 61 | simp2d | |- ( ( ph /\ D R ( M ` B ) ) -> D e. Y ) |
| 83 | 82 | adantrl | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> D e. Y ) |
| 84 | isorel | |- ( ( `' N Isom S , _E ( Y , dom N ) /\ ( C e. Y /\ D e. Y ) ) -> ( C S D <-> ( `' N ` C ) _E ( `' N ` D ) ) ) |
|
| 85 | 80 81 83 84 | syl12anc | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( C S D <-> ( `' N ` C ) _E ( `' N ` D ) ) ) |
| 86 | 64 77 85 | 3bitr4d | |- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( C R D <-> C S D ) ) |
| 87 | 86 | expr | |- ( ( ph /\ C R ( M ` B ) ) -> ( D R ( M ` B ) -> ( C R D <-> C S D ) ) ) |
| 88 | 59 87 | jca | |- ( ( ph /\ C R ( M ` B ) ) -> ( C S ( N ` B ) /\ ( D R ( M ` B ) -> ( C R D <-> C S D ) ) ) ) |