This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe2 . Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
||
| fnwe2.s | |- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
||
| fnwe2.f | |- ( ph -> ( F |` A ) : A --> B ) |
||
| fnwe2.r | |- ( ph -> R We B ) |
||
| fnwe2lem3.a | |- ( ph -> a e. A ) |
||
| fnwe2lem3.b | |- ( ph -> b e. A ) |
||
| Assertion | fnwe2lem3 | |- ( ph -> ( a T b \/ a = b \/ b T a ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| 2 | fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
|
| 3 | fnwe2.s | |- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
|
| 4 | fnwe2.f | |- ( ph -> ( F |` A ) : A --> B ) |
|
| 5 | fnwe2.r | |- ( ph -> R We B ) |
|
| 6 | fnwe2lem3.a | |- ( ph -> a e. A ) |
|
| 7 | fnwe2lem3.b | |- ( ph -> b e. A ) |
|
| 8 | animorrl | |- ( ( ph /\ ( F ` a ) R ( F ` b ) ) -> ( ( F ` a ) R ( F ` b ) \/ ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) ) |
|
| 9 | 1 2 | fnwe2val | |- ( a T b <-> ( ( F ` a ) R ( F ` b ) \/ ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) ) |
| 10 | 8 9 | sylibr | |- ( ( ph /\ ( F ` a ) R ( F ` b ) ) -> a T b ) |
| 11 | 10 | 3mix1d | |- ( ( ph /\ ( F ` a ) R ( F ` b ) ) -> ( a T b \/ a = b \/ b T a ) ) |
| 12 | simplr | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ a [_ ( F ` a ) / z ]_ S b ) -> ( F ` a ) = ( F ` b ) ) |
|
| 13 | simpr | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ a [_ ( F ` a ) / z ]_ S b ) -> a [_ ( F ` a ) / z ]_ S b ) |
|
| 14 | 12 13 | jca | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ a [_ ( F ` a ) / z ]_ S b ) -> ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) |
| 15 | 14 | olcd | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ a [_ ( F ` a ) / z ]_ S b ) -> ( ( F ` a ) R ( F ` b ) \/ ( ( F ` a ) = ( F ` b ) /\ a [_ ( F ` a ) / z ]_ S b ) ) ) |
| 16 | 15 9 | sylibr | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ a [_ ( F ` a ) / z ]_ S b ) -> a T b ) |
| 17 | 16 | 3mix1d | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ a [_ ( F ` a ) / z ]_ S b ) -> ( a T b \/ a = b \/ b T a ) ) |
| 18 | 3mix2 | |- ( a = b -> ( a T b \/ a = b \/ b T a ) ) |
|
| 19 | 18 | adantl | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ a = b ) -> ( a T b \/ a = b \/ b T a ) ) |
| 20 | simplr | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ b [_ ( F ` a ) / z ]_ S a ) -> ( F ` a ) = ( F ` b ) ) |
|
| 21 | 20 | eqcomd | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ b [_ ( F ` a ) / z ]_ S a ) -> ( F ` b ) = ( F ` a ) ) |
| 22 | csbeq1 | |- ( ( F ` a ) = ( F ` b ) -> [_ ( F ` a ) / z ]_ S = [_ ( F ` b ) / z ]_ S ) |
|
| 23 | 22 | adantl | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> [_ ( F ` a ) / z ]_ S = [_ ( F ` b ) / z ]_ S ) |
| 24 | 23 | breqd | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> ( b [_ ( F ` a ) / z ]_ S a <-> b [_ ( F ` b ) / z ]_ S a ) ) |
| 25 | 24 | biimpa | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ b [_ ( F ` a ) / z ]_ S a ) -> b [_ ( F ` b ) / z ]_ S a ) |
| 26 | 21 25 | jca | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ b [_ ( F ` a ) / z ]_ S a ) -> ( ( F ` b ) = ( F ` a ) /\ b [_ ( F ` b ) / z ]_ S a ) ) |
| 27 | 26 | olcd | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ b [_ ( F ` a ) / z ]_ S a ) -> ( ( F ` b ) R ( F ` a ) \/ ( ( F ` b ) = ( F ` a ) /\ b [_ ( F ` b ) / z ]_ S a ) ) ) |
| 28 | 1 2 | fnwe2val | |- ( b T a <-> ( ( F ` b ) R ( F ` a ) \/ ( ( F ` b ) = ( F ` a ) /\ b [_ ( F ` b ) / z ]_ S a ) ) ) |
| 29 | 27 28 | sylibr | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ b [_ ( F ` a ) / z ]_ S a ) -> b T a ) |
| 30 | 29 | 3mix3d | |- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ b [_ ( F ` a ) / z ]_ S a ) -> ( a T b \/ a = b \/ b T a ) ) |
| 31 | 1 2 3 | fnwe2lem1 | |- ( ( ph /\ a e. A ) -> [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 32 | 6 31 | mpdan | |- ( ph -> [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 33 | weso | |- ( [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } -> [_ ( F ` a ) / z ]_ S Or { y e. A | ( F ` y ) = ( F ` a ) } ) |
|
| 34 | 32 33 | syl | |- ( ph -> [_ ( F ` a ) / z ]_ S Or { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 35 | 34 | adantr | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> [_ ( F ` a ) / z ]_ S Or { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 36 | fveqeq2 | |- ( y = a -> ( ( F ` y ) = ( F ` a ) <-> ( F ` a ) = ( F ` a ) ) ) |
|
| 37 | 6 | adantr | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> a e. A ) |
| 38 | eqidd | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> ( F ` a ) = ( F ` a ) ) |
|
| 39 | 36 37 38 | elrabd | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> a e. { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 40 | fveqeq2 | |- ( y = b -> ( ( F ` y ) = ( F ` a ) <-> ( F ` b ) = ( F ` a ) ) ) |
|
| 41 | 7 | adantr | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> b e. A ) |
| 42 | simpr | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> ( F ` a ) = ( F ` b ) ) |
|
| 43 | 42 | eqcomd | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> ( F ` b ) = ( F ` a ) ) |
| 44 | 40 41 43 | elrabd | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> b e. { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 45 | solin | |- ( ( [_ ( F ` a ) / z ]_ S Or { y e. A | ( F ` y ) = ( F ` a ) } /\ ( a e. { y e. A | ( F ` y ) = ( F ` a ) } /\ b e. { y e. A | ( F ` y ) = ( F ` a ) } ) ) -> ( a [_ ( F ` a ) / z ]_ S b \/ a = b \/ b [_ ( F ` a ) / z ]_ S a ) ) |
|
| 46 | 35 39 44 45 | syl12anc | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> ( a [_ ( F ` a ) / z ]_ S b \/ a = b \/ b [_ ( F ` a ) / z ]_ S a ) ) |
| 47 | 17 19 30 46 | mpjao3dan | |- ( ( ph /\ ( F ` a ) = ( F ` b ) ) -> ( a T b \/ a = b \/ b T a ) ) |
| 48 | animorrl | |- ( ( ph /\ ( F ` b ) R ( F ` a ) ) -> ( ( F ` b ) R ( F ` a ) \/ ( ( F ` b ) = ( F ` a ) /\ b [_ ( F ` b ) / z ]_ S a ) ) ) |
|
| 49 | 48 28 | sylibr | |- ( ( ph /\ ( F ` b ) R ( F ` a ) ) -> b T a ) |
| 50 | 49 | 3mix3d | |- ( ( ph /\ ( F ` b ) R ( F ` a ) ) -> ( a T b \/ a = b \/ b T a ) ) |
| 51 | weso | |- ( R We B -> R Or B ) |
|
| 52 | 5 51 | syl | |- ( ph -> R Or B ) |
| 53 | 6 | fvresd | |- ( ph -> ( ( F |` A ) ` a ) = ( F ` a ) ) |
| 54 | 4 6 | ffvelcdmd | |- ( ph -> ( ( F |` A ) ` a ) e. B ) |
| 55 | 53 54 | eqeltrrd | |- ( ph -> ( F ` a ) e. B ) |
| 56 | 7 | fvresd | |- ( ph -> ( ( F |` A ) ` b ) = ( F ` b ) ) |
| 57 | 4 7 | ffvelcdmd | |- ( ph -> ( ( F |` A ) ` b ) e. B ) |
| 58 | 56 57 | eqeltrrd | |- ( ph -> ( F ` b ) e. B ) |
| 59 | solin | |- ( ( R Or B /\ ( ( F ` a ) e. B /\ ( F ` b ) e. B ) ) -> ( ( F ` a ) R ( F ` b ) \/ ( F ` a ) = ( F ` b ) \/ ( F ` b ) R ( F ` a ) ) ) |
|
| 60 | 52 55 58 59 | syl12anc | |- ( ph -> ( ( F ` a ) R ( F ` b ) \/ ( F ` a ) = ( F ` b ) \/ ( F ` b ) R ( F ` a ) ) ) |
| 61 | 11 47 50 60 | mpjao3dan | |- ( ph -> ( a T b \/ a = b \/ b T a ) ) |