This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsingle | ⊢ Singleton Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | ⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ⊆ ( V × V ) | |
| 2 | df-rel | ⊢ ( Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ↔ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ⊆ ( V × V ) ) | |
| 3 | 1 2 | mpbir | ⊢ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) |
| 4 | df-singleton | ⊢ Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) | |
| 5 | 4 | releqi | ⊢ ( Rel Singleton ↔ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ) |
| 6 | 3 5 | mpbir | ⊢ Rel Singleton |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | brsingle | ⊢ ( 𝑥 Singleton 𝑦 ↔ 𝑦 = { 𝑥 } ) |
| 10 | vex | ⊢ 𝑧 ∈ V | |
| 11 | 7 10 | brsingle | ⊢ ( 𝑥 Singleton 𝑧 ↔ 𝑧 = { 𝑥 } ) |
| 12 | eqtr3 | ⊢ ( ( 𝑦 = { 𝑥 } ∧ 𝑧 = { 𝑥 } ) → 𝑦 = 𝑧 ) | |
| 13 | 9 11 12 | syl2anb | ⊢ ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) |
| 14 | 13 | ax-gen | ⊢ ∀ 𝑧 ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) |
| 15 | 14 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) |
| 16 | dffun2 | ⊢ ( Fun Singleton ↔ ( Rel Singleton ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 17 | 6 15 16 | mpbir2an | ⊢ Fun Singleton |
| 18 | eqv | ⊢ ( dom Singleton = V ↔ ∀ 𝑥 𝑥 ∈ dom Singleton ) | |
| 19 | eqid | ⊢ { 𝑥 } = { 𝑥 } | |
| 20 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 21 | 7 20 | brsingle | ⊢ ( 𝑥 Singleton { 𝑥 } ↔ { 𝑥 } = { 𝑥 } ) |
| 22 | 19 21 | mpbir | ⊢ 𝑥 Singleton { 𝑥 } |
| 23 | breq2 | ⊢ ( 𝑦 = { 𝑥 } → ( 𝑥 Singleton 𝑦 ↔ 𝑥 Singleton { 𝑥 } ) ) | |
| 24 | 20 23 | spcev | ⊢ ( 𝑥 Singleton { 𝑥 } → ∃ 𝑦 𝑥 Singleton 𝑦 ) |
| 25 | 22 24 | ax-mp | ⊢ ∃ 𝑦 𝑥 Singleton 𝑦 |
| 26 | 7 | eldm | ⊢ ( 𝑥 ∈ dom Singleton ↔ ∃ 𝑦 𝑥 Singleton 𝑦 ) |
| 27 | 25 26 | mpbir | ⊢ 𝑥 ∈ dom Singleton |
| 28 | 18 27 | mpgbir | ⊢ dom Singleton = V |
| 29 | df-fn | ⊢ ( Singleton Fn V ↔ ( Fun Singleton ∧ dom Singleton = V ) ) | |
| 30 | 17 28 29 | mpbir2an | ⊢ Singleton Fn V |