This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Revised by Scott Fenton, 13-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvsingle | ⊢ ( Singleton ‘ 𝐴 ) = { 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( Singleton ‘ 𝑥 ) = ( Singleton ‘ 𝐴 ) ) | |
| 2 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( Singleton ‘ 𝑥 ) = { 𝑥 } ↔ ( Singleton ‘ 𝐴 ) = { 𝐴 } ) ) |
| 4 | eqid | ⊢ { 𝑥 } = { 𝑥 } | |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 7 | 5 6 | brsingle | ⊢ ( 𝑥 Singleton { 𝑥 } ↔ { 𝑥 } = { 𝑥 } ) |
| 8 | 4 7 | mpbir | ⊢ 𝑥 Singleton { 𝑥 } |
| 9 | fnsingle | ⊢ Singleton Fn V | |
| 10 | fnbrfvb | ⊢ ( ( Singleton Fn V ∧ 𝑥 ∈ V ) → ( ( Singleton ‘ 𝑥 ) = { 𝑥 } ↔ 𝑥 Singleton { 𝑥 } ) ) | |
| 11 | 9 5 10 | mp2an | ⊢ ( ( Singleton ‘ 𝑥 ) = { 𝑥 } ↔ 𝑥 Singleton { 𝑥 } ) |
| 12 | 8 11 | mpbir | ⊢ ( Singleton ‘ 𝑥 ) = { 𝑥 } |
| 13 | 3 12 | vtoclg | ⊢ ( 𝐴 ∈ V → ( Singleton ‘ 𝐴 ) = { 𝐴 } ) |
| 14 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( Singleton ‘ 𝐴 ) = ∅ ) | |
| 15 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 16 | 15 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 17 | 14 16 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( Singleton ‘ 𝐴 ) = { 𝐴 } ) |
| 18 | 13 17 | pm2.61i | ⊢ ( Singleton ‘ 𝐴 ) = { 𝐴 } |