This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsingle | |- Singleton Fn _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | |- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) C_ ( _V X. _V ) |
|
| 2 | df-rel | |- ( Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) <-> ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) C_ ( _V X. _V ) ) |
|
| 3 | 1 2 | mpbir | |- Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |
| 4 | df-singleton | |- Singleton = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |
|
| 5 | 4 | releqi | |- ( Rel Singleton <-> Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) ) |
| 6 | 3 5 | mpbir | |- Rel Singleton |
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | brsingle | |- ( x Singleton y <-> y = { x } ) |
| 10 | vex | |- z e. _V |
|
| 11 | 7 10 | brsingle | |- ( x Singleton z <-> z = { x } ) |
| 12 | eqtr3 | |- ( ( y = { x } /\ z = { x } ) -> y = z ) |
|
| 13 | 9 11 12 | syl2anb | |- ( ( x Singleton y /\ x Singleton z ) -> y = z ) |
| 14 | 13 | ax-gen | |- A. z ( ( x Singleton y /\ x Singleton z ) -> y = z ) |
| 15 | 14 | gen2 | |- A. x A. y A. z ( ( x Singleton y /\ x Singleton z ) -> y = z ) |
| 16 | dffun2 | |- ( Fun Singleton <-> ( Rel Singleton /\ A. x A. y A. z ( ( x Singleton y /\ x Singleton z ) -> y = z ) ) ) |
|
| 17 | 6 15 16 | mpbir2an | |- Fun Singleton |
| 18 | eqv | |- ( dom Singleton = _V <-> A. x x e. dom Singleton ) |
|
| 19 | eqid | |- { x } = { x } |
|
| 20 | vsnex | |- { x } e. _V |
|
| 21 | 7 20 | brsingle | |- ( x Singleton { x } <-> { x } = { x } ) |
| 22 | 19 21 | mpbir | |- x Singleton { x } |
| 23 | breq2 | |- ( y = { x } -> ( x Singleton y <-> x Singleton { x } ) ) |
|
| 24 | 20 23 | spcev | |- ( x Singleton { x } -> E. y x Singleton y ) |
| 25 | 22 24 | ax-mp | |- E. y x Singleton y |
| 26 | 7 | eldm | |- ( x e. dom Singleton <-> E. y x Singleton y ) |
| 27 | 25 26 | mpbir | |- x e. dom Singleton |
| 28 | 18 27 | mpgbir | |- dom Singleton = _V |
| 29 | df-fn | |- ( Singleton Fn _V <-> ( Fun Singleton /\ dom Singleton = _V ) ) |
|
| 30 | 17 28 29 | mpbir2an | |- Singleton Fn _V |