This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The valid Godel formulas of height 1 is the set of all formulas of the form ( a |g b ) and A.g k a with atoms a , b of the form x e. y . (Contributed by AV, 20-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmla1 | ⊢ ( Fmla ‘ 1o ) = ( ( { ∅ } × ( ω × ω ) ) ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o | ⊢ 1o = suc ∅ | |
| 2 | 1 | fveq2i | ⊢ ( Fmla ‘ 1o ) = ( Fmla ‘ suc ∅ ) |
| 3 | peano1 | ⊢ ∅ ∈ ω | |
| 4 | fmlasuc | ⊢ ( ∅ ∈ ω → ( Fmla ‘ suc ∅ ) = ( ( Fmla ‘ ∅ ) ∪ { 𝑥 ∣ ∃ 𝑝 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) } ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( Fmla ‘ suc ∅ ) = ( ( Fmla ‘ ∅ ) ∪ { 𝑥 ∣ ∃ 𝑝 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) } ) |
| 6 | fmla0xp | ⊢ ( Fmla ‘ ∅ ) = ( { ∅ } × ( ω × ω ) ) | |
| 7 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } | |
| 8 | 7 | rexeqi | ⊢ ( ∃ 𝑝 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ↔ ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) |
| 9 | eqeq1 | ⊢ ( 𝑦 = 𝑝 → ( 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 10 | 9 | 2rexbidv | ⊢ ( 𝑦 = 𝑝 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 11 | 10 | elrab | ⊢ ( 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ↔ ( 𝑝 ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑝 ⊼𝑔 𝑞 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ↔ ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) ) ) |
| 15 | eqidd | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑘 = 𝑘 ) | |
| 16 | id | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) ) | |
| 17 | 15 16 | goaleq12d | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ∀𝑔 𝑘 𝑝 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) |
| 18 | 17 | eqeq2d | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ∀𝑔 𝑘 𝑝 ↔ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ↔ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 20 | 14 19 | orbi12d | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ↔ ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 21 | eqeq1 | ⊢ ( 𝑧 = 𝑞 → ( 𝑧 = ( 𝑘 ∈𝑔 𝑙 ) ↔ 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) ) ) | |
| 22 | 21 | 2rexbidv | ⊢ ( 𝑧 = 𝑞 → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑧 = ( 𝑘 ∈𝑔 𝑙 ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 23 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑧 ∈ V ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑧 = ( 𝑘 ∈𝑔 𝑙 ) } | |
| 24 | 22 23 | elrab2 | ⊢ ( 𝑞 ∈ ( Fmla ‘ ∅ ) ↔ ( 𝑞 ∈ V ∧ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 25 | oveq2 | ⊢ ( 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) | |
| 26 | 25 | eqeq2d | ⊢ ( 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 27 | 26 | biimpcd | ⊢ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) → ( 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) → 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 28 | 27 | reximdv | ⊢ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) → ( ∃ 𝑙 ∈ ω 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) → ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 29 | 28 | reximdv | ⊢ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 30 | 29 | com12 | ⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑞 = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 31 | 24 30 | simplbiim | ⊢ ( 𝑞 ∈ ( Fmla ‘ ∅ ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 32 | 31 | rexlimiv | ⊢ ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 33 | 32 | orim1i | ⊢ ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 34 | r19.43 | ⊢ ( ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) → ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 36 | 20 35 | biimtrdi | ⊢ ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) → ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 37 | 36 | com12 | ⊢ ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) → ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 38 | 37 | reximdv | ⊢ ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) → ( ∃ 𝑗 ∈ ω 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 39 | 38 | reximdv | ⊢ ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 40 | 39 | com12 | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) → ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 41 | 11 40 | simplbiim | ⊢ ( 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } → ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 42 | 41 | rexlimiv | ⊢ ( ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 43 | oveq1 | ⊢ ( 𝑖 = 𝑚 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑗 ) ) | |
| 44 | 43 | oveq1d | ⊢ ( 𝑖 = 𝑚 → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 45 | 44 | eqeq2d | ⊢ ( 𝑖 = 𝑚 → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 46 | 45 | rexbidv | ⊢ ( 𝑖 = 𝑚 → ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 47 | eqidd | ⊢ ( 𝑖 = 𝑚 → 𝑘 = 𝑘 ) | |
| 48 | 47 43 | goaleq12d | ⊢ ( 𝑖 = 𝑚 → ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) ) |
| 49 | 48 | eqeq2d | ⊢ ( 𝑖 = 𝑚 → ( 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) ) ) |
| 50 | 46 49 | orbi12d | ⊢ ( 𝑖 = 𝑚 → ( ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) ) ) ) |
| 51 | 50 | rexbidv | ⊢ ( 𝑖 = 𝑚 → ( ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) ) ) ) |
| 52 | oveq2 | ⊢ ( 𝑗 = 𝑛 → ( 𝑚 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) | |
| 53 | 52 | oveq1d | ⊢ ( 𝑗 = 𝑛 → ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 54 | 53 | eqeq2d | ⊢ ( 𝑗 = 𝑛 → ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 55 | 54 | rexbidv | ⊢ ( 𝑗 = 𝑛 → ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 56 | eqidd | ⊢ ( 𝑗 = 𝑛 → 𝑘 = 𝑘 ) | |
| 57 | 56 52 | goaleq12d | ⊢ ( 𝑗 = 𝑛 → ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) |
| 58 | 57 | eqeq2d | ⊢ ( 𝑗 = 𝑛 → ( 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) ↔ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 59 | 55 58 | orbi12d | ⊢ ( 𝑗 = 𝑛 → ( ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) ) ↔ ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) ) |
| 60 | 59 | rexbidv | ⊢ ( 𝑗 = 𝑛 → ( ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑗 ) ) ↔ ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) ) |
| 61 | 51 60 | cbvrex2vw | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 62 | oveq1 | ⊢ ( 𝑘 = 𝑜 → ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑙 ) ) | |
| 63 | 62 | oveq2d | ⊢ ( 𝑘 = 𝑜 → ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) |
| 64 | 63 | eqeq2d | ⊢ ( 𝑘 = 𝑜 → ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) ) |
| 65 | 64 | rexbidv | ⊢ ( 𝑘 = 𝑜 → ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) ) |
| 66 | id | ⊢ ( 𝑘 = 𝑜 → 𝑘 = 𝑜 ) | |
| 67 | eqidd | ⊢ ( 𝑘 = 𝑜 → ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑛 ) ) | |
| 68 | 66 67 | goaleq12d | ⊢ ( 𝑘 = 𝑜 → ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) |
| 69 | 68 | eqeq2d | ⊢ ( 𝑘 = 𝑜 → ( 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ↔ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 70 | 65 69 | orbi12d | ⊢ ( 𝑘 = 𝑜 → ( ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ↔ ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) ) |
| 71 | 70 | cbvrexvw | ⊢ ( ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ↔ ∃ 𝑜 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 72 | 3 | ne0ii | ⊢ ω ≠ ∅ |
| 73 | r19.44zv | ⊢ ( ω ≠ ∅ → ( ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ↔ ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) ) | |
| 74 | 72 73 | ax-mp | ⊢ ( ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ↔ ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 75 | eqeq1 | ⊢ ( 𝑦 = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 76 | 75 | 2rexbidv | ⊢ ( 𝑦 = ( 𝑚 ∈𝑔 𝑛 ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 77 | ovexd | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) → ( 𝑚 ∈𝑔 𝑛 ) ∈ V ) | |
| 78 | simpl | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → 𝑚 ∈ ω ) | |
| 79 | 43 | eqeq2d | ⊢ ( 𝑖 = 𝑚 → ( ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑖 ∈𝑔 𝑗 ) ↔ ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑗 ) ) ) |
| 80 | 79 | rexbidv | ⊢ ( 𝑖 = 𝑚 → ( ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑗 ) ) ) |
| 81 | 80 | adantl | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑖 = 𝑚 ) → ( ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑗 ) ) ) |
| 82 | simpr | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → 𝑛 ∈ ω ) | |
| 83 | 52 | eqeq2d | ⊢ ( 𝑗 = 𝑛 → ( ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑗 ) ↔ ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 84 | 83 | adantl | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑗 = 𝑛 ) → ( ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑗 ) ↔ ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 85 | eqidd | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑛 ) ) | |
| 86 | 82 84 85 | rspcedvd | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑚 ∈𝑔 𝑗 ) ) |
| 87 | 78 81 86 | rspcedvd | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 88 | 87 | ad3antrrr | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑚 ∈𝑔 𝑛 ) = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 89 | 76 77 88 | elrabd | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) → ( 𝑚 ∈𝑔 𝑛 ) ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ) |
| 90 | oveq1 | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑝 ⊼𝑔 𝑞 ) = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ) | |
| 91 | 90 | eqeq2d | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ↔ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ) ) |
| 92 | 91 | rexbidv | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ↔ ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ) ) |
| 93 | eqidd | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → 𝑘 = 𝑘 ) | |
| 94 | id | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) ) | |
| 95 | 93 94 | goaleq12d | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → ∀𝑔 𝑘 𝑝 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) |
| 96 | 95 | eqeq2d | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑥 = ∀𝑔 𝑘 𝑝 ↔ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 97 | 96 | rexbidv | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → ( ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ↔ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 98 | 92 97 | orbi12d | ⊢ ( 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) → ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ↔ ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) ) |
| 99 | 98 | adantl | ⊢ ( ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) ∧ 𝑝 = ( 𝑚 ∈𝑔 𝑛 ) ) → ( ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ↔ ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) ) |
| 100 | ovexd | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ( 𝑜 ∈𝑔 𝑙 ) ∈ V ) | |
| 101 | simpr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) → 𝑜 ∈ ω ) | |
| 102 | 101 | adantr | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → 𝑜 ∈ ω ) |
| 103 | oveq1 | ⊢ ( 𝑖 = 𝑜 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑜 ∈𝑔 𝑗 ) ) | |
| 104 | 103 | eqeq2d | ⊢ ( 𝑖 = 𝑜 → ( ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑖 ∈𝑔 𝑗 ) ↔ ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑗 ) ) ) |
| 105 | 104 | rexbidv | ⊢ ( 𝑖 = 𝑜 → ( ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑗 ) ) ) |
| 106 | 105 | adantl | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑖 = 𝑜 ) → ( ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑗 ) ) ) |
| 107 | simpr | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → 𝑙 ∈ ω ) | |
| 108 | oveq2 | ⊢ ( 𝑗 = 𝑙 → ( 𝑜 ∈𝑔 𝑗 ) = ( 𝑜 ∈𝑔 𝑙 ) ) | |
| 109 | 108 | eqeq2d | ⊢ ( 𝑗 = 𝑙 → ( ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑗 ) ↔ ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑙 ) ) ) |
| 110 | 109 | adantl | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑗 = 𝑙 ) → ( ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑗 ) ↔ ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑙 ) ) ) |
| 111 | eqidd | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑙 ) ) | |
| 112 | 107 110 111 | rspcedvd | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑜 ∈𝑔 𝑗 ) ) |
| 113 | 102 106 112 | rspcedvd | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 114 | eqeq1 | ⊢ ( 𝑝 = ( 𝑜 ∈𝑔 𝑙 ) → ( 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 115 | 114 | 2rexbidv | ⊢ ( 𝑝 = ( 𝑜 ∈𝑔 𝑙 ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 116 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑝 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑝 = ( 𝑖 ∈𝑔 𝑗 ) } | |
| 117 | 115 116 | elrab2 | ⊢ ( ( 𝑜 ∈𝑔 𝑙 ) ∈ ( Fmla ‘ ∅ ) ↔ ( ( 𝑜 ∈𝑔 𝑙 ) ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑜 ∈𝑔 𝑙 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 118 | 100 113 117 | sylanbrc | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ( 𝑜 ∈𝑔 𝑙 ) ∈ ( Fmla ‘ ∅ ) ) |
| 119 | 118 | adantr | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) → ( 𝑜 ∈𝑔 𝑙 ) ∈ ( Fmla ‘ ∅ ) ) |
| 120 | oveq2 | ⊢ ( 𝑞 = ( 𝑜 ∈𝑔 𝑙 ) → ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) | |
| 121 | 120 | eqeq2d | ⊢ ( 𝑞 = ( 𝑜 ∈𝑔 𝑙 ) → ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ↔ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) ) |
| 122 | 121 | adantl | ⊢ ( ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) ∧ 𝑞 = ( 𝑜 ∈𝑔 𝑙 ) ) → ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ↔ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) ) |
| 123 | simpr | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) → 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) | |
| 124 | 119 122 123 | rspcedvd | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ) → ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ) |
| 125 | 124 | ex | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) → ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ) ) |
| 126 | 102 | adantr | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → 𝑜 ∈ ω ) |
| 127 | 69 | adantl | ⊢ ( ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ∧ 𝑘 = 𝑜 ) → ( 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ↔ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 128 | simpr | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) | |
| 129 | 126 127 128 | rspcedvd | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) |
| 130 | 129 | ex | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ( 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) → ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 131 | 125 130 | orim12d | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ( ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) ) |
| 132 | 131 | imp | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) → ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 133 | 89 99 132 | rspcedvd | ⊢ ( ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) ∧ ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) |
| 134 | 133 | ex | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) ∧ 𝑙 ∈ ω ) → ( ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) ) |
| 135 | 134 | rexlimdva | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) → ( ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) ) |
| 136 | 74 135 | biimtrrid | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑜 ∈ ω ) → ( ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) ) |
| 137 | 136 | rexlimdva | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ∃ 𝑜 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑜 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑜 ( 𝑚 ∈𝑔 𝑛 ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) ) |
| 138 | 71 137 | biimtrid | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) ) |
| 139 | 138 | rexlimivv | ⊢ ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑚 ∈𝑔 𝑛 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑚 ∈𝑔 𝑛 ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) |
| 140 | 61 139 | sylbi | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) → ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ) |
| 141 | 42 140 | impbii | ⊢ ( ∃ 𝑝 ∈ { 𝑦 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) } ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 142 | 8 141 | bitri | ⊢ ( ∃ 𝑝 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 143 | 142 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑝 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) } = { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } |
| 144 | 6 143 | uneq12i | ⊢ ( ( Fmla ‘ ∅ ) ∪ { 𝑥 ∣ ∃ 𝑝 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑞 ∈ ( Fmla ‘ ∅ ) 𝑥 = ( 𝑝 ⊼𝑔 𝑞 ) ∨ ∃ 𝑘 ∈ ω 𝑥 = ∀𝑔 𝑘 𝑝 ) } ) = ( ( { ∅ } × ( ω × ω ) ) ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) |
| 145 | 2 5 144 | 3eqtri | ⊢ ( Fmla ‘ 1o ) = ( ( { ∅ } × ( ω × ω ) ) ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑙 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) |