This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimss1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐾 fLim 𝐹 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 2 | 1 | flimelbas | ⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝑥 ∈ ∪ 𝐾 ) |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑥 ∈ ∪ 𝐾 ) |
| 4 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 5 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ∪ 𝐹 = 𝑋 ) |
| 7 | 1 | flimfil | ⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐾 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐾 ) ) |
| 9 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐾 ) → ∪ 𝐹 = ∪ 𝐾 ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ∪ 𝐹 = ∪ 𝐾 ) |
| 11 | 6 10 | eqtr3d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑋 = ∪ 𝐾 ) |
| 12 | 3 11 | eleqtrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑥 ∈ 𝑋 ) |
| 13 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 14 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐽 ∈ Top ) |
| 16 | flimtop | ⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝐾 ∈ Top ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐾 ∈ Top ) |
| 18 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 19 | 13 18 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 20 | 19 11 | eqtr3d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ∪ 𝐽 = ∪ 𝐾 ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐽 ⊆ 𝐾 ) | |
| 22 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 23 | 22 1 | topssnei | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐾 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ) |
| 24 | 15 17 20 21 23 | syl31anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ) |
| 25 | flimneiss | ⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) | |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) |
| 27 | 24 26 | sstrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) |
| 28 | elflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) | |
| 29 | 13 4 28 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) |
| 30 | 12 27 29 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 32 | 31 | ssrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐾 fLim 𝐹 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |