This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | flimfil | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | elflim2 | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ) |
| 4 | 3 | simp2d | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ∪ ran Fil ) |
| 5 | filunirn | ⊢ ( 𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| 7 | 3 | simp3d | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 8 | sspwuni | ⊢ ( 𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∪ 𝐹 ⊆ 𝑋 ) |
| 10 | flimneiss | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) | |
| 11 | flimtop | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) | |
| 12 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ∈ 𝐽 ) |
| 14 | 1 | flimelbas | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| 15 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 16 | 11 13 14 15 | syl3anc | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 17 | 10 16 | sseldd | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ∈ 𝐹 ) |
| 18 | elssuni | ⊢ ( 𝑋 ∈ 𝐹 → 𝑋 ⊆ ∪ 𝐹 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝑋 ⊆ ∪ 𝐹 ) |
| 20 | 9 19 | eqssd | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∪ 𝐹 = 𝑋 ) |
| 21 | 20 | fveq2d | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( Fil ‘ ∪ 𝐹 ) = ( Fil ‘ 𝑋 ) ) |
| 22 | 6 21 | eleqtrd | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |