This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimss1 | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) -> ( K fLim F ) C_ ( J fLim F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. K = U. K |
|
| 2 | 1 | flimelbas | |- ( x e. ( K fLim F ) -> x e. U. K ) |
| 3 | 2 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> x e. U. K ) |
| 4 | simpl2 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> F e. ( Fil ` X ) ) |
|
| 5 | filunibas | |- ( F e. ( Fil ` X ) -> U. F = X ) |
|
| 6 | 4 5 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> U. F = X ) |
| 7 | 1 | flimfil | |- ( x e. ( K fLim F ) -> F e. ( Fil ` U. K ) ) |
| 8 | 7 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> F e. ( Fil ` U. K ) ) |
| 9 | filunibas | |- ( F e. ( Fil ` U. K ) -> U. F = U. K ) |
|
| 10 | 8 9 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> U. F = U. K ) |
| 11 | 6 10 | eqtr3d | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> X = U. K ) |
| 12 | 3 11 | eleqtrrd | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> x e. X ) |
| 13 | simpl1 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> J e. ( TopOn ` X ) ) |
|
| 14 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 15 | 13 14 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> J e. Top ) |
| 16 | flimtop | |- ( x e. ( K fLim F ) -> K e. Top ) |
|
| 17 | 16 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> K e. Top ) |
| 18 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 19 | 13 18 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> X = U. J ) |
| 20 | 19 11 | eqtr3d | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> U. J = U. K ) |
| 21 | simpl3 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> J C_ K ) |
|
| 22 | eqid | |- U. J = U. J |
|
| 23 | 22 1 | topssnei | |- ( ( ( J e. Top /\ K e. Top /\ U. J = U. K ) /\ J C_ K ) -> ( ( nei ` J ) ` { x } ) C_ ( ( nei ` K ) ` { x } ) ) |
| 24 | 15 17 20 21 23 | syl31anc | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> ( ( nei ` J ) ` { x } ) C_ ( ( nei ` K ) ` { x } ) ) |
| 25 | flimneiss | |- ( x e. ( K fLim F ) -> ( ( nei ` K ) ` { x } ) C_ F ) |
|
| 26 | 25 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> ( ( nei ` K ) ` { x } ) C_ F ) |
| 27 | 24 26 | sstrd | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> ( ( nei ` J ) ` { x } ) C_ F ) |
| 28 | elflim | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) ) -> ( x e. ( J fLim F ) <-> ( x e. X /\ ( ( nei ` J ) ` { x } ) C_ F ) ) ) |
|
| 29 | 13 4 28 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> ( x e. ( J fLim F ) <-> ( x e. X /\ ( ( nei ` J ) ` { x } ) C_ F ) ) ) |
| 30 | 12 27 29 | mpbir2and | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) /\ x e. ( K fLim F ) ) -> x e. ( J fLim F ) ) |
| 31 | 30 | ex | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) -> ( x e. ( K fLim F ) -> x e. ( J fLim F ) ) ) |
| 32 | 31 | ssrdv | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ J C_ K ) -> ( K fLim F ) C_ ( J fLim F ) ) |