This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldiv4lem1div2 | ⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn1uz2 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 2 | 1lt4 | ⊢ 1 < 4 | |
| 3 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 4 | 4nn | ⊢ 4 ∈ ℕ | |
| 5 | divfl0 | ⊢ ( ( 1 ∈ ℕ0 ∧ 4 ∈ ℕ ) → ( 1 < 4 ↔ ( ⌊ ‘ ( 1 / 4 ) ) = 0 ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( 1 < 4 ↔ ( ⌊ ‘ ( 1 / 4 ) ) = 0 ) |
| 7 | 2 6 | mpbi | ⊢ ( ⌊ ‘ ( 1 / 4 ) ) = 0 |
| 8 | 1re | ⊢ 1 ∈ ℝ | |
| 9 | 4re | ⊢ 4 ∈ ℝ | |
| 10 | 4ne0 | ⊢ 4 ≠ 0 | |
| 11 | redivcl | ⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( 1 / 4 ) ∈ ℝ ) | |
| 12 | 11 | flcld | ⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( ⌊ ‘ ( 1 / 4 ) ) ∈ ℤ ) |
| 13 | 12 | zred | ⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( ⌊ ‘ ( 1 / 4 ) ) ∈ ℝ ) |
| 14 | 8 9 10 13 | mp3an | ⊢ ( ⌊ ‘ ( 1 / 4 ) ) ∈ ℝ |
| 15 | 14 | eqlei | ⊢ ( ( ⌊ ‘ ( 1 / 4 ) ) = 0 → ( ⌊ ‘ ( 1 / 4 ) ) ≤ 0 ) |
| 16 | 7 15 | mp1i | ⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 1 / 4 ) ) ≤ 0 ) |
| 17 | fvoveq1 | ⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 4 ) ) = ( ⌊ ‘ ( 1 / 4 ) ) ) | |
| 18 | oveq1 | ⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = ( 1 − 1 ) ) | |
| 19 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = 0 ) |
| 21 | 20 | oveq1d | ⊢ ( 𝑁 = 1 → ( ( 𝑁 − 1 ) / 2 ) = ( 0 / 2 ) ) |
| 22 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 23 | div0 | ⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 0 / 2 ) = 0 ) | |
| 24 | 22 23 | ax-mp | ⊢ ( 0 / 2 ) = 0 |
| 25 | 21 24 | eqtrdi | ⊢ ( 𝑁 = 1 → ( ( 𝑁 − 1 ) / 2 ) = 0 ) |
| 26 | 16 17 25 | 3brtr4d | ⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 27 | fldiv4lem1div2uz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) | |
| 28 | 26 27 | jaoi | ⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |
| 29 | 1 28 | sylbi | ⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 𝑁 / 4 ) ) ≤ ( ( 𝑁 − 1 ) / 2 ) ) |