This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldiv4lem1div2 | |- ( N e. NN -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn1uz2 | |- ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
|
| 2 | 1lt4 | |- 1 < 4 |
|
| 3 | 1nn0 | |- 1 e. NN0 |
|
| 4 | 4nn | |- 4 e. NN |
|
| 5 | divfl0 | |- ( ( 1 e. NN0 /\ 4 e. NN ) -> ( 1 < 4 <-> ( |_ ` ( 1 / 4 ) ) = 0 ) ) |
|
| 6 | 3 4 5 | mp2an | |- ( 1 < 4 <-> ( |_ ` ( 1 / 4 ) ) = 0 ) |
| 7 | 2 6 | mpbi | |- ( |_ ` ( 1 / 4 ) ) = 0 |
| 8 | 1re | |- 1 e. RR |
|
| 9 | 4re | |- 4 e. RR |
|
| 10 | 4ne0 | |- 4 =/= 0 |
|
| 11 | redivcl | |- ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( 1 / 4 ) e. RR ) |
|
| 12 | 11 | flcld | |- ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( |_ ` ( 1 / 4 ) ) e. ZZ ) |
| 13 | 12 | zred | |- ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( |_ ` ( 1 / 4 ) ) e. RR ) |
| 14 | 8 9 10 13 | mp3an | |- ( |_ ` ( 1 / 4 ) ) e. RR |
| 15 | 14 | eqlei | |- ( ( |_ ` ( 1 / 4 ) ) = 0 -> ( |_ ` ( 1 / 4 ) ) <_ 0 ) |
| 16 | 7 15 | mp1i | |- ( N = 1 -> ( |_ ` ( 1 / 4 ) ) <_ 0 ) |
| 17 | fvoveq1 | |- ( N = 1 -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( 1 / 4 ) ) ) |
|
| 18 | oveq1 | |- ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) |
|
| 19 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 20 | 18 19 | eqtrdi | |- ( N = 1 -> ( N - 1 ) = 0 ) |
| 21 | 20 | oveq1d | |- ( N = 1 -> ( ( N - 1 ) / 2 ) = ( 0 / 2 ) ) |
| 22 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 23 | div0 | |- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 0 / 2 ) = 0 ) |
|
| 24 | 22 23 | ax-mp | |- ( 0 / 2 ) = 0 |
| 25 | 21 24 | eqtrdi | |- ( N = 1 -> ( ( N - 1 ) / 2 ) = 0 ) |
| 26 | 16 17 25 | 3brtr4d | |- ( N = 1 -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
| 27 | fldiv4lem1div2uz2 | |- ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
|
| 28 | 26 27 | jaoi | |- ( ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
| 29 | 1 28 | sylbi | |- ( N e. NN -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |