This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division into zero is zero. (Contributed by NM, 14-Mar-2005) (Proof shortened by SN, 9-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | eqid | ⊢ 0 = 0 | |
| 3 | diveq0 | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 / 𝐴 ) = 0 ↔ 0 = 0 ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 ) |
| 5 | 1 4 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 ) |