This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) | |
| 2 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 = 𝐵 → ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ) ) |
| 4 | axltadd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐴 → ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) | |
| 5 | 4 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐴 → ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) |
| 6 | 3 5 | orim12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ( ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ∨ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) ) |
| 7 | 6 | con3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ ( ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ∨ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 8 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 9 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 10 | 8 9 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 12 | 8 11 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 13 | axlttri | ⊢ ( ( ( 𝐶 + 𝐴 ) ∈ ℝ ∧ ( 𝐶 + 𝐵 ) ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ↔ ¬ ( ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ∨ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ↔ ¬ ( ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ∨ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) ) |
| 15 | axlttri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
| 16 | 9 11 15 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 17 | 7 14 16 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) → 𝐴 < 𝐵 ) ) |
| 18 | 1 17 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) |