This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adddivflid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 < 𝐶 ↔ ( ⌊ ‘ ( 𝐴 + ( 𝐵 / 𝐶 ) ) ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 2 | nn0nndivcl | ⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) | |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
| 4 | 1 3 | jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ∈ ℤ ∧ ( 𝐵 / 𝐶 ) ∈ ℝ ) ) |
| 5 | flbi2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 / 𝐶 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝐴 + ( 𝐵 / 𝐶 ) ) ) = 𝐴 ↔ ( 0 ≤ ( 𝐵 / 𝐶 ) ∧ ( 𝐵 / 𝐶 ) < 1 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝐴 + ( 𝐵 / 𝐶 ) ) ) = 𝐴 ↔ ( 0 ≤ ( 𝐵 / 𝐶 ) ∧ ( 𝐵 / 𝐶 ) < 1 ) ) ) |
| 7 | nn0re | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) | |
| 8 | nn0ge0 | ⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) | |
| 9 | 7 8 | jca | ⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 10 | nnre | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ ) | |
| 11 | nngt0 | ⊢ ( 𝐶 ∈ ℕ → 0 < 𝐶 ) | |
| 12 | 10 11 | jca | ⊢ ( 𝐶 ∈ ℕ → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
| 13 | 9 12 | anim12i | ⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ) |
| 15 | divge0 | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 0 ≤ ( 𝐵 / 𝐶 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → 0 ≤ ( 𝐵 / 𝐶 ) ) |
| 17 | 16 | biantrurd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 / 𝐶 ) < 1 ↔ ( 0 ≤ ( 𝐵 / 𝐶 ) ∧ ( 𝐵 / 𝐶 ) < 1 ) ) ) |
| 18 | nnrp | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ+ ) | |
| 19 | 7 18 | anim12i | ⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
| 21 | divlt1lt | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 / 𝐶 ) < 1 ↔ 𝐵 < 𝐶 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 / 𝐶 ) < 1 ↔ 𝐵 < 𝐶 ) ) |
| 23 | 6 17 22 | 3bitr2rd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ ) → ( 𝐵 < 𝐶 ↔ ( ⌊ ‘ ( 𝐴 + ( 𝐵 / 𝐶 ) ) ) = 𝐴 ) ) |