This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014) (Proof shortened by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin45 | ⊢ ( 𝐴 ∈ FinIV → 𝐴 ∈ FinV ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → 𝐴 ≠ ∅ ) | |
| 2 | relen | ⊢ Rel ≈ | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) → 𝐴 ∈ V ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → 𝐴 ∈ V ) |
| 5 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 7 | 1 6 | mpbird | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ∅ ≺ 𝐴 ) |
| 8 | 0sdom1dom | ⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → 1o ≼ 𝐴 ) |
| 10 | djudom2 | ⊢ ( ( 1o ≼ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 11 | 9 4 10 | syl2anc | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 12 | domen2 | ⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) → ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 ↔ ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 ↔ ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( 𝐴 ⊔ 1o ) ≼ 𝐴 ) |
| 15 | domnsym | ⊢ ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 → ¬ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ¬ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 17 | isfin4p1 | ⊢ ( 𝐴 ∈ FinIV ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) | |
| 18 | 17 | biimpi | ⊢ ( 𝐴 ∈ FinIV → 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 19 | 16 18 | nsyl3 | ⊢ ( 𝐴 ∈ FinIV → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 20 | isfin5-2 | ⊢ ( 𝐴 ∈ FinIV → ( 𝐴 ∈ FinV ↔ ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) ) | |
| 21 | 19 20 | mpbird | ⊢ ( 𝐴 ∈ FinIV → 𝐴 ∈ FinV ) |