This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin5-2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinV ↔ ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne | ⊢ ( ¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅ ) | |
| 2 | 1 | bicomi | ⊢ ( 𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅ ) |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅ ) ) |
| 4 | djudoml | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) | |
| 5 | 4 | anidms | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 6 | brsdom | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ↔ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) ∧ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) | |
| 7 | 6 | baib | ⊢ ( 𝐴 ≼ ( 𝐴 ⊔ 𝐴 ) → ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ↔ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ↔ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 9 | 3 8 | orbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ↔ ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) ) |
| 10 | isfin5 | ⊢ ( 𝐴 ∈ FinV ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) | |
| 11 | ianor | ⊢ ( ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ↔ ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) | |
| 12 | 9 10 11 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinV ↔ ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) ) |