This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014) (Proof shortened by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin45 | |- ( A e. Fin4 -> A e. Fin5 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> A =/= (/) ) |
|
| 2 | relen | |- Rel ~~ |
|
| 3 | 2 | brrelex1i | |- ( A ~~ ( A |_| A ) -> A e. _V ) |
| 4 | 3 | adantl | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> A e. _V ) |
| 5 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 6 | 4 5 | syl | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> ( (/) ~< A <-> A =/= (/) ) ) |
| 7 | 1 6 | mpbird | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> (/) ~< A ) |
| 8 | 0sdom1dom | |- ( (/) ~< A <-> 1o ~<_ A ) |
|
| 9 | 7 8 | sylib | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> 1o ~<_ A ) |
| 10 | djudom2 | |- ( ( 1o ~<_ A /\ A e. _V ) -> ( A |_| 1o ) ~<_ ( A |_| A ) ) |
|
| 11 | 9 4 10 | syl2anc | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> ( A |_| 1o ) ~<_ ( A |_| A ) ) |
| 12 | domen2 | |- ( A ~~ ( A |_| A ) -> ( ( A |_| 1o ) ~<_ A <-> ( A |_| 1o ) ~<_ ( A |_| A ) ) ) |
|
| 13 | 12 | adantl | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> ( ( A |_| 1o ) ~<_ A <-> ( A |_| 1o ) ~<_ ( A |_| A ) ) ) |
| 14 | 11 13 | mpbird | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> ( A |_| 1o ) ~<_ A ) |
| 15 | domnsym | |- ( ( A |_| 1o ) ~<_ A -> -. A ~< ( A |_| 1o ) ) |
|
| 16 | 14 15 | syl | |- ( ( A =/= (/) /\ A ~~ ( A |_| A ) ) -> -. A ~< ( A |_| 1o ) ) |
| 17 | isfin4p1 | |- ( A e. Fin4 <-> A ~< ( A |_| 1o ) ) |
|
| 18 | 17 | biimpi | |- ( A e. Fin4 -> A ~< ( A |_| 1o ) ) |
| 19 | 16 18 | nsyl3 | |- ( A e. Fin4 -> -. ( A =/= (/) /\ A ~~ ( A |_| A ) ) ) |
| 20 | isfin5-2 | |- ( A e. Fin4 -> ( A e. Fin5 <-> -. ( A =/= (/) /\ A ~~ ( A |_| A ) ) ) ) |
|
| 21 | 19 20 | mpbird | |- ( A e. Fin4 -> A e. Fin5 ) |