This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of TakeutiZaring p. 63 and its converse. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omcan | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omordi | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) | |
| 2 | 1 | ex | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) ) |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) ) |
| 5 | 4 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |
| 6 | omordi | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) | |
| 7 | 6 | ex | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 11 | 5 10 | orim12d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 12 | 11 | con3d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 13 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 14 | eloni | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → Ord ( 𝐴 ·o 𝐵 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 ·o 𝐵 ) ) |
| 16 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ·o 𝐶 ) ∈ On ) | |
| 17 | eloni | ⊢ ( ( 𝐴 ·o 𝐶 ) ∈ On → Ord ( 𝐴 ·o 𝐶 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → Ord ( 𝐴 ·o 𝐶 ) ) |
| 19 | ordtri3 | ⊢ ( ( Ord ( 𝐴 ·o 𝐵 ) ∧ Ord ( 𝐴 ·o 𝐶 ) ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) | |
| 20 | 15 18 19 | syl2an | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 21 | 20 | 3impdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 23 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 24 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 25 | ordtri3 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) | |
| 26 | 23 24 25 | syl2an | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 27 | 26 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 29 | 12 22 28 | 3imtr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 30 | oveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ) | |
| 31 | 29 30 | impbid1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |