This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre . (Contributed by AV, 9-Aug-2020) (Proof shortened by Steven Nguyen, 3-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiminre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | soss | ⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) | |
| 3 | 1 2 | mpi | ⊢ ( 𝐴 ⊆ ℝ → < Or 𝐴 ) |
| 4 | fiming | ⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) | |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) |
| 6 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 8 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 9 | 8 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 10 | 7 9 | leloed | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) |
| 11 | orcom | ⊢ ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) | |
| 12 | 11 | a1i | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) |
| 13 | neor | ⊢ ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) | |
| 14 | 13 | a1i | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑥 < 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) ) |
| 15 | 10 12 14 | 3bitr2d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) ) ) |
| 16 | 15 | biimprd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → 𝑥 ≤ 𝑦 ) ) |
| 17 | 16 | ralimdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 18 | 17 | reximdva | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑥 < 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 20 | 5 19 | mpd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |