This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fictb | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ≼ ω ↔ ( fi ‘ 𝐴 ) ≼ ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | ⊢ ( 𝐴 ≼ ω → ∃ 𝑓 𝑓 : 𝐴 –1-1→ ω ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≼ ω ) → ∃ 𝑓 𝑓 : 𝐴 –1-1→ ω ) |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex2i | ⊢ ( 𝐴 ≼ ω → ω ∈ V ) |
| 5 | omelon2 | ⊢ ( ω ∈ V → ω ∈ On ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ω ∈ On ) |
| 7 | pwexg | ⊢ ( 𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ V ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → 𝒫 𝐴 ∈ V ) |
| 9 | inex1g | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 11 | difss | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) | |
| 12 | ssdomg | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) ) | |
| 13 | 10 11 12 | mpisyl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| 14 | f1f1orn | ⊢ ( 𝑓 : 𝐴 –1-1→ ω → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) |
| 16 | f1opwfi | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝑓 “ 𝑥 ) ) : ( 𝒫 𝐴 ∩ Fin ) –1-1-onto→ ( 𝒫 ran 𝑓 ∩ Fin ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝑓 “ 𝑥 ) ) : ( 𝒫 𝐴 ∩ Fin ) –1-1-onto→ ( 𝒫 ran 𝑓 ∩ Fin ) ) |
| 18 | f1oeng | ⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ∈ V ∧ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝑓 “ 𝑥 ) ) : ( 𝒫 𝐴 ∩ Fin ) –1-1-onto→ ( 𝒫 ran 𝑓 ∩ Fin ) ) → ( 𝒫 𝐴 ∩ Fin ) ≈ ( 𝒫 ran 𝑓 ∩ Fin ) ) | |
| 19 | 10 17 18 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 𝐴 ∩ Fin ) ≈ ( 𝒫 ran 𝑓 ∩ Fin ) ) |
| 20 | pwexg | ⊢ ( ω ∈ V → 𝒫 ω ∈ V ) | |
| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → 𝒫 ω ∈ V ) |
| 22 | inex1g | ⊢ ( 𝒫 ω ∈ V → ( 𝒫 ω ∩ Fin ) ∈ V ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 ω ∩ Fin ) ∈ V ) |
| 24 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ ω → 𝑓 : 𝐴 ⟶ ω ) | |
| 25 | 24 | frnd | ⊢ ( 𝑓 : 𝐴 –1-1→ ω → ran 𝑓 ⊆ ω ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ran 𝑓 ⊆ ω ) |
| 27 | 26 | sspwd | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → 𝒫 ran 𝑓 ⊆ 𝒫 ω ) |
| 28 | 27 | ssrind | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 ran 𝑓 ∩ Fin ) ⊆ ( 𝒫 ω ∩ Fin ) ) |
| 29 | ssdomg | ⊢ ( ( 𝒫 ω ∩ Fin ) ∈ V → ( ( 𝒫 ran 𝑓 ∩ Fin ) ⊆ ( 𝒫 ω ∩ Fin ) → ( 𝒫 ran 𝑓 ∩ Fin ) ≼ ( 𝒫 ω ∩ Fin ) ) ) | |
| 30 | 23 28 29 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 ran 𝑓 ∩ Fin ) ≼ ( 𝒫 ω ∩ Fin ) ) |
| 31 | sneq | ⊢ ( 𝑓 = 𝑧 → { 𝑓 } = { 𝑧 } ) | |
| 32 | pweq | ⊢ ( 𝑓 = 𝑧 → 𝒫 𝑓 = 𝒫 𝑧 ) | |
| 33 | 31 32 | xpeq12d | ⊢ ( 𝑓 = 𝑧 → ( { 𝑓 } × 𝒫 𝑓 ) = ( { 𝑧 } × 𝒫 𝑧 ) ) |
| 34 | 33 | cbviunv | ⊢ ∪ 𝑓 ∈ 𝑥 ( { 𝑓 } × 𝒫 𝑓 ) = ∪ 𝑧 ∈ 𝑥 ( { 𝑧 } × 𝒫 𝑧 ) |
| 35 | iuneq1 | ⊢ ( 𝑥 = 𝑦 → ∪ 𝑧 ∈ 𝑥 ( { 𝑧 } × 𝒫 𝑧 ) = ∪ 𝑧 ∈ 𝑦 ( { 𝑧 } × 𝒫 𝑧 ) ) | |
| 36 | 34 35 | eqtrid | ⊢ ( 𝑥 = 𝑦 → ∪ 𝑓 ∈ 𝑥 ( { 𝑓 } × 𝒫 𝑓 ) = ∪ 𝑧 ∈ 𝑦 ( { 𝑧 } × 𝒫 𝑧 ) ) |
| 37 | 36 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( card ‘ ∪ 𝑓 ∈ 𝑥 ( { 𝑓 } × 𝒫 𝑓 ) ) = ( card ‘ ∪ 𝑧 ∈ 𝑦 ( { 𝑧 } × 𝒫 𝑧 ) ) ) |
| 38 | 37 | cbvmptv | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑥 ( { 𝑓 } × 𝒫 𝑓 ) ) ) = ( 𝑦 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑧 ∈ 𝑦 ( { 𝑧 } × 𝒫 𝑧 ) ) ) |
| 39 | 38 | ackbij1 | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑥 ( { 𝑓 } × 𝒫 𝑓 ) ) ) : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω |
| 40 | f1oeng | ⊢ ( ( ( 𝒫 ω ∩ Fin ) ∈ V ∧ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑥 ( { 𝑓 } × 𝒫 𝑓 ) ) ) : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω ) → ( 𝒫 ω ∩ Fin ) ≈ ω ) | |
| 41 | 23 39 40 | sylancl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 ω ∩ Fin ) ≈ ω ) |
| 42 | domentr | ⊢ ( ( ( 𝒫 ran 𝑓 ∩ Fin ) ≼ ( 𝒫 ω ∩ Fin ) ∧ ( 𝒫 ω ∩ Fin ) ≈ ω ) → ( 𝒫 ran 𝑓 ∩ Fin ) ≼ ω ) | |
| 43 | 30 41 42 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 ran 𝑓 ∩ Fin ) ≼ ω ) |
| 44 | endomtr | ⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ≈ ( 𝒫 ran 𝑓 ∩ Fin ) ∧ ( 𝒫 ran 𝑓 ∩ Fin ) ≼ ω ) → ( 𝒫 𝐴 ∩ Fin ) ≼ ω ) | |
| 45 | 19 43 44 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝒫 𝐴 ∩ Fin ) ≼ ω ) |
| 46 | domtr | ⊢ ( ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≼ ω ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ω ) | |
| 47 | 13 45 46 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ω ) |
| 48 | ondomen | ⊢ ( ( ω ∈ On ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ω ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) | |
| 49 | 6 47 48 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) |
| 50 | eqid | ⊢ ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) = ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) | |
| 51 | 50 | fifo | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
| 52 | 51 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
| 53 | fodomnum | ⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card → ( ( 𝑦 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑦 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 54 | 49 52 53 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
| 55 | domtr | ⊢ ( ( ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ω ) → ( fi ‘ 𝐴 ) ≼ ω ) | |
| 56 | 54 47 55 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) ∧ 𝑓 : 𝐴 –1-1→ ω ) → ( fi ‘ 𝐴 ) ≼ ω ) |
| 57 | 56 | ex | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) → ( 𝑓 : 𝐴 –1-1→ ω → ( fi ‘ 𝐴 ) ≼ ω ) ) |
| 58 | 57 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ω ∈ V ) → ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ ω → ( fi ‘ 𝐴 ) ≼ ω ) ) |
| 59 | 4 58 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≼ ω ) → ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ ω → ( fi ‘ 𝐴 ) ≼ ω ) ) |
| 60 | 2 59 | mpd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≼ ω ) → ( fi ‘ 𝐴 ) ≼ ω ) |
| 61 | 60 | ex | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ≼ ω → ( fi ‘ 𝐴 ) ≼ ω ) ) |
| 62 | fvex | ⊢ ( fi ‘ 𝐴 ) ∈ V | |
| 63 | ssfii | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) | |
| 64 | ssdomg | ⊢ ( ( fi ‘ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( fi ‘ 𝐴 ) → 𝐴 ≼ ( fi ‘ 𝐴 ) ) ) | |
| 65 | 62 63 64 | mpsyl | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ≼ ( fi ‘ 𝐴 ) ) |
| 66 | domtr | ⊢ ( ( 𝐴 ≼ ( fi ‘ 𝐴 ) ∧ ( fi ‘ 𝐴 ) ≼ ω ) → 𝐴 ≼ ω ) | |
| 67 | 66 | ex | ⊢ ( 𝐴 ≼ ( fi ‘ 𝐴 ) → ( ( fi ‘ 𝐴 ) ≼ ω → 𝐴 ≼ ω ) ) |
| 68 | 65 67 | syl | ⊢ ( 𝐴 ∈ 𝐵 → ( ( fi ‘ 𝐴 ) ≼ ω → 𝐴 ≼ ω ) ) |
| 69 | 61 68 | impbid | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ≼ ω ↔ ( fi ‘ 𝐴 ) ≼ ω ) ) |