This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fictb | |- ( A e. B -> ( A ~<_ _om <-> ( fi ` A ) ~<_ _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | |- ( A ~<_ _om -> E. f f : A -1-1-> _om ) |
|
| 2 | 1 | adantl | |- ( ( A e. B /\ A ~<_ _om ) -> E. f f : A -1-1-> _om ) |
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex2i | |- ( A ~<_ _om -> _om e. _V ) |
| 5 | omelon2 | |- ( _om e. _V -> _om e. On ) |
|
| 6 | 5 | ad2antlr | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> _om e. On ) |
| 7 | pwexg | |- ( A e. B -> ~P A e. _V ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P A e. _V ) |
| 9 | inex1g | |- ( ~P A e. _V -> ( ~P A i^i Fin ) e. _V ) |
|
| 10 | 8 9 | syl | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) e. _V ) |
| 11 | difss | |- ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) |
|
| 12 | ssdomg | |- ( ( ~P A i^i Fin ) e. _V -> ( ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) ) |
|
| 13 | 10 11 12 | mpisyl | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) |
| 14 | f1f1orn | |- ( f : A -1-1-> _om -> f : A -1-1-onto-> ran f ) |
|
| 15 | 14 | adantl | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> f : A -1-1-onto-> ran f ) |
| 16 | f1opwfi | |- ( f : A -1-1-onto-> ran f -> ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) |
| 18 | f1oeng | |- ( ( ( ~P A i^i Fin ) e. _V /\ ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) -> ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) ) |
|
| 19 | 10 17 18 | syl2anc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) ) |
| 20 | pwexg | |- ( _om e. _V -> ~P _om e. _V ) |
|
| 21 | 20 | ad2antlr | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P _om e. _V ) |
| 22 | inex1g | |- ( ~P _om e. _V -> ( ~P _om i^i Fin ) e. _V ) |
|
| 23 | 21 22 | syl | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P _om i^i Fin ) e. _V ) |
| 24 | f1f | |- ( f : A -1-1-> _om -> f : A --> _om ) |
|
| 25 | 24 | frnd | |- ( f : A -1-1-> _om -> ran f C_ _om ) |
| 26 | 25 | adantl | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ran f C_ _om ) |
| 27 | 26 | sspwd | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P ran f C_ ~P _om ) |
| 28 | 27 | ssrind | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) C_ ( ~P _om i^i Fin ) ) |
| 29 | ssdomg | |- ( ( ~P _om i^i Fin ) e. _V -> ( ( ~P ran f i^i Fin ) C_ ( ~P _om i^i Fin ) -> ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) ) ) |
|
| 30 | 23 28 29 | sylc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) ) |
| 31 | sneq | |- ( f = z -> { f } = { z } ) |
|
| 32 | pweq | |- ( f = z -> ~P f = ~P z ) |
|
| 33 | 31 32 | xpeq12d | |- ( f = z -> ( { f } X. ~P f ) = ( { z } X. ~P z ) ) |
| 34 | 33 | cbviunv | |- U_ f e. x ( { f } X. ~P f ) = U_ z e. x ( { z } X. ~P z ) |
| 35 | iuneq1 | |- ( x = y -> U_ z e. x ( { z } X. ~P z ) = U_ z e. y ( { z } X. ~P z ) ) |
|
| 36 | 34 35 | eqtrid | |- ( x = y -> U_ f e. x ( { f } X. ~P f ) = U_ z e. y ( { z } X. ~P z ) ) |
| 37 | 36 | fveq2d | |- ( x = y -> ( card ` U_ f e. x ( { f } X. ~P f ) ) = ( card ` U_ z e. y ( { z } X. ~P z ) ) ) |
| 38 | 37 | cbvmptv | |- ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) = ( y e. ( ~P _om i^i Fin ) |-> ( card ` U_ z e. y ( { z } X. ~P z ) ) ) |
| 39 | 38 | ackbij1 | |- ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om |
| 40 | f1oeng | |- ( ( ( ~P _om i^i Fin ) e. _V /\ ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om ) -> ( ~P _om i^i Fin ) ~~ _om ) |
|
| 41 | 23 39 40 | sylancl | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P _om i^i Fin ) ~~ _om ) |
| 42 | domentr | |- ( ( ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) /\ ( ~P _om i^i Fin ) ~~ _om ) -> ( ~P ran f i^i Fin ) ~<_ _om ) |
|
| 43 | 30 41 42 | syl2anc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) ~<_ _om ) |
| 44 | endomtr | |- ( ( ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) /\ ( ~P ran f i^i Fin ) ~<_ _om ) -> ( ~P A i^i Fin ) ~<_ _om ) |
|
| 45 | 19 43 44 | syl2anc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) ~<_ _om ) |
| 46 | domtr | |- ( ( ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) ~<_ _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) |
|
| 47 | 13 45 46 | syl2anc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) |
| 48 | ondomen | |- ( ( _om e. On /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) |
|
| 49 | 6 47 48 | syl2anc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) |
| 50 | eqid | |- ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) = ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) |
|
| 51 | 50 | fifo | |- ( A e. B -> ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |
| 52 | 51 | ad2antrr | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |
| 53 | fodomnum | |- ( ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card -> ( ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) ) |
|
| 54 | 49 52 53 | sylc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) |
| 55 | domtr | |- ( ( ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) -> ( fi ` A ) ~<_ _om ) |
|
| 56 | 54 47 55 | syl2anc | |- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( fi ` A ) ~<_ _om ) |
| 57 | 56 | ex | |- ( ( A e. B /\ _om e. _V ) -> ( f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) |
| 58 | 57 | exlimdv | |- ( ( A e. B /\ _om e. _V ) -> ( E. f f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) |
| 59 | 4 58 | sylan2 | |- ( ( A e. B /\ A ~<_ _om ) -> ( E. f f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) |
| 60 | 2 59 | mpd | |- ( ( A e. B /\ A ~<_ _om ) -> ( fi ` A ) ~<_ _om ) |
| 61 | 60 | ex | |- ( A e. B -> ( A ~<_ _om -> ( fi ` A ) ~<_ _om ) ) |
| 62 | fvex | |- ( fi ` A ) e. _V |
|
| 63 | ssfii | |- ( A e. B -> A C_ ( fi ` A ) ) |
|
| 64 | ssdomg | |- ( ( fi ` A ) e. _V -> ( A C_ ( fi ` A ) -> A ~<_ ( fi ` A ) ) ) |
|
| 65 | 62 63 64 | mpsyl | |- ( A e. B -> A ~<_ ( fi ` A ) ) |
| 66 | domtr | |- ( ( A ~<_ ( fi ` A ) /\ ( fi ` A ) ~<_ _om ) -> A ~<_ _om ) |
|
| 67 | 66 | ex | |- ( A ~<_ ( fi ` A ) -> ( ( fi ` A ) ~<_ _om -> A ~<_ _om ) ) |
| 68 | 65 67 | syl | |- ( A e. B -> ( ( fi ` A ) ~<_ _om -> A ~<_ _om ) ) |
| 69 | 61 68 | impbid | |- ( A e. B -> ( A ~<_ _om <-> ( fi ` A ) ~<_ _om ) ) |