This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013) Avoid ax-rep . (Revised by BTernaryTau, 3-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficardun2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undjudom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 2 | ficardadju | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) | |
| 3 | domentr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
| 5 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) | |
| 6 | finnum | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
| 8 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
| 9 | ficardom | ⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) | |
| 10 | nnacl | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω ) |
| 12 | nnon | ⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ On ) | |
| 13 | onenon | ⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ On → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card ) |
| 15 | carddom2 | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ dom card ∧ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ dom card ) → ( ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) | |
| 16 | 7 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∪ 𝐵 ) ≼ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) |
| 17 | 4 16 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) |
| 18 | cardnn | ⊢ ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ∈ ω → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) | |
| 19 | 11 18 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
| 20 | 17 19 | sseqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |