This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013) Avoid ax-rep . (Revised by BTernaryTau, 3-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficardun2 | |- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( ( card ` A ) +o ( card ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undjudom | |- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
|
| 2 | ficardadju | |- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
|
| 3 | domentr | |- ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) |
| 5 | unfi | |- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
|
| 6 | finnum | |- ( ( A u. B ) e. Fin -> ( A u. B ) e. dom card ) |
|
| 7 | 5 6 | syl | |- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. dom card ) |
| 8 | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
|
| 9 | ficardom | |- ( B e. Fin -> ( card ` B ) e. _om ) |
|
| 10 | nnacl | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) |
| 12 | nnon | |- ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( ( card ` A ) +o ( card ` B ) ) e. On ) |
|
| 13 | onenon | |- ( ( ( card ` A ) +o ( card ` B ) ) e. On -> ( ( card ` A ) +o ( card ` B ) ) e. dom card ) |
|
| 14 | 11 12 13 | 3syl | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. dom card ) |
| 15 | carddom2 | |- ( ( ( A u. B ) e. dom card /\ ( ( card ` A ) +o ( card ` B ) ) e. dom card ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) ) |
|
| 16 | 7 14 15 | syl2anc | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) ) |
| 17 | 4 16 | mpbird | |- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) ) |
| 18 | cardnn | |- ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
|
| 19 | 11 18 | syl | |- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
| 20 | 17 19 | sseqtrd | |- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( ( card ` A ) +o ( card ` B ) ) ) |