This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of finite sets is equinumerous to the ordinal sum of the cardinalities of those sets. (Contributed by BTernaryTau, 3-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficardadju | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
| 2 | ficardom | ⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) | |
| 3 | nnadju | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( card ‘ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) | |
| 4 | df-dju | ⊢ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) = ( ( { ∅ } × ( card ‘ 𝐴 ) ) ∪ ( { 1o } × ( card ‘ 𝐵 ) ) ) | |
| 5 | snfi | ⊢ { ∅ } ∈ Fin | |
| 6 | nnfi | ⊢ ( ( card ‘ 𝐴 ) ∈ ω → ( card ‘ 𝐴 ) ∈ Fin ) | |
| 7 | xpfi | ⊢ ( ( { ∅ } ∈ Fin ∧ ( card ‘ 𝐴 ) ∈ Fin ) → ( { ∅ } × ( card ‘ 𝐴 ) ) ∈ Fin ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( ( card ‘ 𝐴 ) ∈ ω → ( { ∅ } × ( card ‘ 𝐴 ) ) ∈ Fin ) |
| 9 | snfi | ⊢ { 1o } ∈ Fin | |
| 10 | nnfi | ⊢ ( ( card ‘ 𝐵 ) ∈ ω → ( card ‘ 𝐵 ) ∈ Fin ) | |
| 11 | xpfi | ⊢ ( ( { 1o } ∈ Fin ∧ ( card ‘ 𝐵 ) ∈ Fin ) → ( { 1o } × ( card ‘ 𝐵 ) ) ∈ Fin ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( ( card ‘ 𝐵 ) ∈ ω → ( { 1o } × ( card ‘ 𝐵 ) ) ∈ Fin ) |
| 13 | unfi | ⊢ ( ( ( { ∅ } × ( card ‘ 𝐴 ) ) ∈ Fin ∧ ( { 1o } × ( card ‘ 𝐵 ) ) ∈ Fin ) → ( ( { ∅ } × ( card ‘ 𝐴 ) ) ∪ ( { 1o } × ( card ‘ 𝐵 ) ) ) ∈ Fin ) | |
| 14 | 8 12 13 | syl2an | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( { ∅ } × ( card ‘ 𝐴 ) ) ∪ ( { 1o } × ( card ‘ 𝐵 ) ) ) ∈ Fin ) |
| 15 | 4 14 | eqeltrid | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ∈ Fin ) |
| 16 | ficardid | ⊢ ( ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ∈ Fin → ( card ‘ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ) ≈ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( card ‘ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ) ≈ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ) |
| 18 | 3 17 | eqbrtrrd | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ) |
| 19 | 1 2 18 | syl2an | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ) |
| 20 | ficardid | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ≈ 𝐴 ) | |
| 21 | ficardid | ⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ≈ 𝐵 ) | |
| 22 | djuen | ⊢ ( ( ( card ‘ 𝐴 ) ≈ 𝐴 ∧ ( card ‘ 𝐵 ) ≈ 𝐵 ) → ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ⊔ 𝐵 ) ) | |
| 23 | 20 21 22 | syl2an | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 24 | entr | ⊢ ( ( ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ∧ ( ( card ‘ 𝐴 ) ⊔ ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ⊔ 𝐵 ) ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ⊔ 𝐵 ) ) | |
| 25 | 19 23 24 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 26 | 25 | ensymd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |