This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of finite sets is equinumerous to the ordinal sum of the cardinalities of those sets. (Contributed by BTernaryTau, 3-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficardadju | |- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
|
| 2 | ficardom | |- ( B e. Fin -> ( card ` B ) e. _om ) |
|
| 3 | nnadju | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
|
| 4 | df-dju | |- ( ( card ` A ) |_| ( card ` B ) ) = ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) |
|
| 5 | snfi | |- { (/) } e. Fin |
|
| 6 | nnfi | |- ( ( card ` A ) e. _om -> ( card ` A ) e. Fin ) |
|
| 7 | xpfi | |- ( ( { (/) } e. Fin /\ ( card ` A ) e. Fin ) -> ( { (/) } X. ( card ` A ) ) e. Fin ) |
|
| 8 | 5 6 7 | sylancr | |- ( ( card ` A ) e. _om -> ( { (/) } X. ( card ` A ) ) e. Fin ) |
| 9 | snfi | |- { 1o } e. Fin |
|
| 10 | nnfi | |- ( ( card ` B ) e. _om -> ( card ` B ) e. Fin ) |
|
| 11 | xpfi | |- ( ( { 1o } e. Fin /\ ( card ` B ) e. Fin ) -> ( { 1o } X. ( card ` B ) ) e. Fin ) |
|
| 12 | 9 10 11 | sylancr | |- ( ( card ` B ) e. _om -> ( { 1o } X. ( card ` B ) ) e. Fin ) |
| 13 | unfi | |- ( ( ( { (/) } X. ( card ` A ) ) e. Fin /\ ( { 1o } X. ( card ` B ) ) e. Fin ) -> ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) e. Fin ) |
|
| 14 | 8 12 13 | syl2an | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) e. Fin ) |
| 15 | 4 14 | eqeltrid | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) |_| ( card ` B ) ) e. Fin ) |
| 16 | ficardid | |- ( ( ( card ` A ) |_| ( card ` B ) ) e. Fin -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
| 18 | 3 17 | eqbrtrrd | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
| 19 | 1 2 18 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
| 20 | ficardid | |- ( A e. Fin -> ( card ` A ) ~~ A ) |
|
| 21 | ficardid | |- ( B e. Fin -> ( card ` B ) ~~ B ) |
|
| 22 | djuen | |- ( ( ( card ` A ) ~~ A /\ ( card ` B ) ~~ B ) -> ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) |
| 24 | entr | |- ( ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) /\ ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) |
|
| 25 | 19 23 24 | syl2anc | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) |
| 26 | 25 | ensymd | |- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |