This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgss | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv | ⊢ ( 𝐹 ⊆ 𝐺 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) | |
| 2 | 1 | anim2d | ⊢ ( 𝐹 ⊆ 𝐺 → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) → ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) |
| 4 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
| 6 | elfg | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐺 𝑥 ⊆ 𝑡 ) ) ) |
| 8 | 3 5 7 | 3imtr4d | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡 ∈ ( 𝑋 filGen 𝐺 ) ) ) |
| 9 | 8 | ssrdv | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑋 filGen 𝐹 ) ⊆ ( 𝑋 filGen 𝐺 ) ) |