This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite complement topology on a set A . Example 3 in Munkres p. 77. (Contributed by FL, 15-Aug-2006) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fctop | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ∪ 𝑦 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
| 3 | eqeq1 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = ∅ ↔ ∪ 𝑦 = ∅ ) ) | |
| 4 | 2 3 | orbi12d | ⊢ ( 𝑥 = ∪ 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ∨ ∪ 𝑦 = ∅ ) ) ) |
| 5 | uniss | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) | |
| 6 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 | |
| 7 | sspwuni | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) | |
| 8 | 6 7 | mpbi | ⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝐴 |
| 9 | 5 8 | sstrdi | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ 𝐴 ) |
| 10 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 11 | 10 | elpw | ⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
| 12 | 9 11 | sylibr | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
| 13 | uni0c | ⊢ ( ∪ 𝑦 = ∅ ↔ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) | |
| 14 | 13 | notbii | ⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
| 15 | rexnal | ⊢ ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ) |
| 17 | ssel2 | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) | |
| 18 | difeq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑧 ) ) | |
| 19 | 18 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
| 20 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ∅ ↔ 𝑧 = ∅ ) ) | |
| 21 | 19 20 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) |
| 22 | 21 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) |
| 23 | 17 22 | sylib | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) |
| 24 | 23 | simprd | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) |
| 25 | 24 | ord | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ ( 𝐴 ∖ 𝑧 ) ∈ Fin → 𝑧 = ∅ ) ) |
| 26 | 25 | con1d | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ 𝑧 = ∅ → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) |
| 28 | elssuni | ⊢ ( 𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦 ) | |
| 29 | 28 | sscond | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) |
| 30 | ssfi | ⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) | |
| 31 | 29 30 | sylan2 | ⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ 𝑧 ∈ 𝑦 ) → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) |
| 32 | 31 | expcom | ⊢ ( 𝑧 ∈ 𝑦 → ( ( 𝐴 ∖ 𝑧 ) ∈ Fin → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( ( 𝐴 ∖ 𝑧 ) ∈ Fin → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
| 34 | 27 33 | mpd | ⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) |
| 35 | 34 | rexlimdva2 | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
| 36 | 16 35 | biimtrid | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ¬ ∪ 𝑦 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ) ) |
| 37 | 36 | con1d | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ¬ ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin → ∪ 𝑦 = ∅ ) ) |
| 38 | 37 | orrd | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ( ( 𝐴 ∖ ∪ 𝑦 ) ∈ Fin ∨ ∪ 𝑦 = ∅ ) ) |
| 39 | 4 12 38 | elrabd | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
| 40 | 39 | ax-gen | ⊢ ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
| 41 | ssinss1 | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) | |
| 42 | vex | ⊢ 𝑦 ∈ V | |
| 43 | 42 | elpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| 44 | 42 | inex1 | ⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
| 45 | 44 | elpw | ⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 46 | 41 43 45 | 3imtr4i | ⊢ ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 48 | difindi | ⊢ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) = ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) | |
| 49 | unfi | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) → ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) ∈ Fin ) | |
| 50 | 48 49 | eqeltrid | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) → ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ) |
| 51 | 50 | orcd | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 52 | ineq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( ∅ ∩ 𝑧 ) ) | |
| 53 | 0in | ⊢ ( ∅ ∩ 𝑧 ) = ∅ | |
| 54 | 52 53 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
| 55 | 54 | olcd | ⊢ ( 𝑦 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 56 | ineq2 | ⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ∅ ) ) | |
| 57 | in0 | ⊢ ( 𝑦 ∩ ∅ ) = ∅ | |
| 58 | 56 57 | eqtrdi | ⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
| 59 | 58 | olcd | ⊢ ( 𝑧 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 60 | 51 55 59 | ccase2 | ⊢ ( ( ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 61 | 60 | ad2ant2l | ⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 62 | 47 61 | jca | ⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 63 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 64 | 63 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 65 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) | |
| 66 | 64 65 | orbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ) |
| 67 | 66 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ) |
| 68 | 67 22 | anbi12i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ↔ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∨ 𝑧 = ∅ ) ) ) ) |
| 69 | difeq2 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ) | |
| 70 | 69 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ) ) |
| 71 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) | |
| 72 | 70 71 | orbi12d | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 73 | 72 | elrab | ⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ↔ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ∈ Fin ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 74 | 62 68 73 | 3imtr4i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
| 75 | 74 | rgen2 | ⊢ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } |
| 76 | 40 75 | pm3.2i | ⊢ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
| 77 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 78 | rabexg | ⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ V ) | |
| 79 | istopg | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ) ) | |
| 80 | 77 78 79 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ) ) |
| 81 | 76 80 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ) |
| 82 | difeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝐴 ) ) | |
| 83 | difid | ⊢ ( 𝐴 ∖ 𝐴 ) = ∅ | |
| 84 | 82 83 | eqtrdi | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ∅ ) |
| 85 | 84 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 86 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) | |
| 87 | 85 86 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) ↔ ( ∅ ∈ Fin ∨ 𝐴 = ∅ ) ) ) |
| 88 | pwidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) | |
| 89 | 0fi | ⊢ ∅ ∈ Fin | |
| 90 | 89 | orci | ⊢ ( ∅ ∈ Fin ∨ 𝐴 = ∅ ) |
| 91 | 90 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ∈ Fin ∨ 𝐴 = ∅ ) ) |
| 92 | 87 88 91 | elrabd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
| 93 | elssuni | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) | |
| 94 | 92 93 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
| 95 | 8 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
| 96 | 94 95 | eqssd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) |
| 97 | istopon | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ) ) | |
| 98 | 81 96 97 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |