This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cluster points in terms of neighborhoods. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | fclselbas | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 3 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 = ∪ 𝐽 ) |
| 5 | 4 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ 𝐽 ) ) |
| 6 | 2 5 | imbitrrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ 𝑋 ) ) |
| 7 | fclsneii | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) | |
| 8 | 7 | 3expb | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑠 ∈ 𝐹 ) ) → ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) |
| 9 | 8 | ralrimivva | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) |
| 10 | 6 9 | jca2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 11 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 12 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝐽 ∈ Top ) |
| 13 | simprl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝑜 ∈ 𝐽 ) | |
| 14 | simprr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝐴 ∈ 𝑜 ) | |
| 15 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 17 | ineq1 | ⊢ ( 𝑛 = 𝑜 → ( 𝑛 ∩ 𝑠 ) = ( 𝑜 ∩ 𝑠 ) ) | |
| 18 | 17 | neeq1d | ⊢ ( 𝑛 = 𝑜 → ( ( 𝑛 ∩ 𝑠 ) ≠ ∅ ↔ ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑛 = 𝑜 → ( ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 20 | 19 | rspcv | ⊢ ( 𝑜 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 22 | 21 | expr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑜 → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 23 | 22 | com23 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ → ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 24 | 23 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 25 | 24 | imdistanda | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) → ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 26 | fclsopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) | |
| 27 | 25 26 | sylibrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 28 | 10 27 | impbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∀ 𝑠 ∈ 𝐹 ( 𝑛 ∩ 𝑠 ) ≠ ∅ ) ) ) |