This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter of supersets of X \ U does not cluster at any point of the open set U . (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supnfcls | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → ¬ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdif | ⊢ ( 𝑈 ∩ ( 𝑋 ∖ 𝑈 ) ) = ∅ | |
| 2 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) | |
| 3 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → 𝑈 ∈ 𝐽 ) | |
| 4 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → 𝐴 ∈ 𝑈 ) | |
| 5 | sseq2 | ⊢ ( 𝑥 = ( 𝑋 ∖ 𝑈 ) → ( ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 ↔ ( 𝑋 ∖ 𝑈 ) ⊆ ( 𝑋 ∖ 𝑈 ) ) ) | |
| 6 | difss | ⊢ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑋 | |
| 7 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 8 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 9 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( ( 𝑋 ∖ 𝑈 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑋 ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → ( ( 𝑋 ∖ 𝑈 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑋 ) ) |
| 11 | 6 10 | mpbiri | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → ( 𝑋 ∖ 𝑈 ) ∈ 𝒫 𝑋 ) |
| 12 | ssidd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → ( 𝑋 ∖ 𝑈 ) ⊆ ( 𝑋 ∖ 𝑈 ) ) | |
| 13 | 5 11 12 | elrabd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → ( 𝑋 ∖ 𝑈 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) |
| 14 | fclsopni | ⊢ ( ( 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ ( 𝑋 ∖ 𝑈 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → ( 𝑈 ∩ ( 𝑋 ∖ 𝑈 ) ) ≠ ∅ ) | |
| 15 | 2 3 4 13 14 | syl13anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) ∧ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) → ( 𝑈 ∩ ( 𝑋 ∖ 𝑈 ) ) ≠ ∅ ) |
| 16 | 15 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) → ( 𝑈 ∩ ( 𝑋 ∖ 𝑈 ) ) ≠ ∅ ) ) |
| 17 | 16 | necon2bd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → ( ( 𝑈 ∩ ( 𝑋 ∖ 𝑈 ) ) = ∅ → ¬ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) ) |
| 18 | 1 17 | mpi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → ¬ 𝐴 ∈ ( 𝐽 fClus { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑥 } ) ) |