This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fclsbas.f | ⊢ 𝐹 = ( 𝑋 filGen 𝐵 ) | |
| Assertion | fclsbas | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclsbas.f | ⊢ 𝐹 = ( 𝑋 filGen 𝐵 ) | |
| 2 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝑋 filGen 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 4 | 1 3 | eqeltrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 5 | fclsopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) ) ) | |
| 6 | 4 5 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) ) ) |
| 7 | ssfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) ) | |
| 8 | 7 | ad3antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝐵 ⊆ ( 𝑋 filGen 𝐵 ) ) |
| 9 | 8 1 | sseqtrrdi | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → 𝐵 ⊆ 𝐹 ) |
| 10 | ssralv | ⊢ ( 𝐵 ⊆ 𝐹 → ( ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ → ∀ 𝑡 ∈ 𝐵 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ → ∀ 𝑡 ∈ 𝐵 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) |
| 12 | ineq2 | ⊢ ( 𝑡 = 𝑠 → ( 𝑜 ∩ 𝑡 ) = ( 𝑜 ∩ 𝑠 ) ) | |
| 13 | 12 | neeq1d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑜 ∩ 𝑡 ) ≠ ∅ ↔ ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 14 | 13 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝐵 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) |
| 15 | 11 14 | imbitrdi | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ → ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 16 | 1 | eleq2i | ⊢ ( 𝑡 ∈ 𝐹 ↔ 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ) |
| 17 | elfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) ) ) | |
| 18 | 17 | ad3antlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) ) ) |
| 19 | 16 18 | bitrid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( 𝑡 ∈ 𝐹 ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) ) ) |
| 20 | 19 | simplbda | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) ∧ 𝑡 ∈ 𝐹 ) → ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) |
| 21 | r19.29r | ⊢ ( ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ∧ ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ∃ 𝑠 ∈ 𝐵 ( 𝑠 ⊆ 𝑡 ∧ ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) | |
| 22 | sslin | ⊢ ( 𝑠 ⊆ 𝑡 → ( 𝑜 ∩ 𝑠 ) ⊆ ( 𝑜 ∩ 𝑡 ) ) | |
| 23 | ssn0 | ⊢ ( ( ( 𝑜 ∩ 𝑠 ) ⊆ ( 𝑜 ∩ 𝑡 ) ∧ ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) | |
| 24 | 22 23 | sylan | ⊢ ( ( 𝑠 ⊆ 𝑡 ∧ ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) |
| 25 | 24 | rexlimivw | ⊢ ( ∃ 𝑠 ∈ 𝐵 ( 𝑠 ⊆ 𝑡 ∧ ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) |
| 26 | 21 25 | syl | ⊢ ( ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ∧ ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) |
| 27 | 26 | ex | ⊢ ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ( ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ → ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) |
| 28 | 20 27 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) ∧ 𝑡 ∈ 𝐹 ) → ( ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ → ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) |
| 29 | 28 | ralrimdva | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ → ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) |
| 30 | 15 29 | impbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ) ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 31 | 30 | anassrs | ⊢ ( ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝐴 ∈ 𝑜 ) → ( ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ↔ ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) |
| 32 | 31 | pm5.74da | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐴 ∈ 𝑜 → ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ↔ ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 33 | 32 | ralbidva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) |
| 34 | 33 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑡 ∈ 𝐹 ( 𝑜 ∩ 𝑡 ) ≠ ∅ ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 35 | 6 34 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐵 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |