This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finer topology has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsss1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐾 fClus 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐽 ⊆ 𝐾 ) | |
| 2 | ssralv | ⊢ ( 𝐽 ⊆ 𝐾 → ( ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) | |
| 3 | 2 | anim2d | ⊢ ( 𝐽 ⊆ 𝐾 → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 4 | 1 3 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 5 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 6 | fclstopon | ⊢ ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 8 | 5 7 | mpbird | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 | fclsopn | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) | |
| 10 | 8 5 9 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐾 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 11 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 12 | fclsopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) | |
| 13 | 11 5 12 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → ∀ 𝑠 ∈ 𝐹 ( 𝑜 ∩ 𝑠 ) ≠ ∅ ) ) ) ) |
| 14 | 4 10 13 | 3imtr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 15 | 14 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 16 | 15 | pm2.43d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐾 fClus 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |