This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facavg | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0readdcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) | |
| 2 | 1 | rehalfcld | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ) |
| 3 | flle | ⊢ ( ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) |
| 5 | reflcl | ⊢ ( ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ) | |
| 6 | 2 5 | syl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ) |
| 7 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 9 | letr | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) ) | |
| 10 | 6 2 8 9 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) ) |
| 11 | 4 10 | mpand | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) ) |
| 12 | nn0addcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) | |
| 13 | 12 | nn0ge0d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑀 + 𝑁 ) ) |
| 14 | halfnneg2 | ⊢ ( ( 𝑀 + 𝑁 ) ∈ ℝ → ( 0 ≤ ( 𝑀 + 𝑁 ) ↔ 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) | |
| 15 | 1 14 | syl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ≤ ( 𝑀 + 𝑁 ) ↔ 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) |
| 16 | 13 15 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) |
| 17 | flge0nn0 | ⊢ ( ( ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ) | |
| 18 | 2 16 17 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ) |
| 19 | simpl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) | |
| 20 | facwordi | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ) | |
| 21 | 20 | 3exp | ⊢ ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ) ) ) |
| 22 | 18 19 21 | sylc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ) ) |
| 23 | faccl | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℕ ) | |
| 24 | 23 | nncnd | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℂ ) |
| 25 | 24 | mulridd | ⊢ ( 𝑀 ∈ ℕ0 → ( ( ! ‘ 𝑀 ) · 1 ) = ( ! ‘ 𝑀 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · 1 ) = ( ! ‘ 𝑀 ) ) |
| 27 | faccl | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) | |
| 28 | 27 | nnred | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℝ ) |
| 29 | 28 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑁 ) ∈ ℝ ) |
| 30 | 23 | nnred | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℝ ) |
| 31 | 23 | nnnn0d | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℕ0 ) |
| 32 | 31 | nn0ge0d | ⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑀 ) ) |
| 33 | 30 32 | jca | ⊢ ( 𝑀 ∈ ℕ0 → ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) |
| 35 | 27 | nnge1d | ⊢ ( 𝑁 ∈ ℕ0 → 1 ≤ ( ! ‘ 𝑁 ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ ( ! ‘ 𝑁 ) ) |
| 37 | 1re | ⊢ 1 ∈ ℝ | |
| 38 | lemul2a | ⊢ ( ( ( 1 ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑁 ) ) → ( ( ! ‘ 𝑀 ) · 1 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) | |
| 39 | 37 38 | mp3anl1 | ⊢ ( ( ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑁 ) ) → ( ( ! ‘ 𝑀 ) · 1 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 40 | 29 34 36 39 | syl21anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · 1 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 41 | 26 40 | eqbrtrrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 42 | 18 | faccld | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℕ ) |
| 43 | 42 | nnred | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℝ ) |
| 44 | 30 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ∈ ℝ ) |
| 45 | remulcl | ⊢ ( ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ) → ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) | |
| 46 | 30 28 45 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) |
| 47 | letr | ⊢ ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℝ ∧ ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ∧ ( ! ‘ 𝑀 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) | |
| 48 | 43 44 46 47 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ∧ ( ! ‘ 𝑀 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 49 | 41 48 | mpan2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 50 | 11 22 49 | 3syld | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 51 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 52 | 51 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 53 | letr | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) ) | |
| 54 | 6 2 52 53 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) ) |
| 55 | 4 54 | mpand | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) ) |
| 56 | simpr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 57 | facwordi | ⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ) | |
| 58 | 57 | 3exp | ⊢ ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ) ) ) |
| 59 | 18 56 58 | sylc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ) ) |
| 60 | 27 | nncnd | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 61 | 60 | mullidd | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
| 62 | 61 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 1 · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
| 63 | 27 | nnnn0d | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ0 ) |
| 64 | 63 | nn0ge0d | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑁 ) ) |
| 65 | 28 64 | jca | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) |
| 66 | 65 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) |
| 67 | 23 | nnge1d | ⊢ ( 𝑀 ∈ ℕ0 → 1 ≤ ( ! ‘ 𝑀 ) ) |
| 68 | 67 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ ( ! ‘ 𝑀 ) ) |
| 69 | lemul1a | ⊢ ( ( ( 1 ∈ ℝ ∧ ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑀 ) ) → ( 1 · ( ! ‘ 𝑁 ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) | |
| 70 | 37 69 | mp3anl1 | ⊢ ( ( ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑀 ) ) → ( 1 · ( ! ‘ 𝑁 ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 71 | 44 66 68 70 | syl21anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 1 · ( ! ‘ 𝑁 ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 72 | 62 71 | eqbrtrrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑁 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
| 73 | letr | ⊢ ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ∧ ( ! ‘ 𝑁 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) | |
| 74 | 43 29 46 73 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ∧ ( ! ‘ 𝑁 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 75 | 72 74 | mpan2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 76 | 55 59 75 | 3syld | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 77 | avgle | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ∨ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) ) | |
| 78 | 7 51 77 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ∨ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) ) |
| 79 | 50 76 78 | mpjaod | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |