This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The average of two numbers is less than or equal to at least one of them. (Contributed by NM, 9-Dec-2005) (Revised by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | avgle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐴 ∨ ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letric | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) ) | |
| 2 | 1 | orcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵 ) ) |
| 3 | avgle2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( ( 𝐵 + 𝐴 ) / 2 ) ≤ 𝐴 ) ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( ( 𝐵 + 𝐴 ) / 2 ) ≤ 𝐴 ) ) |
| 5 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 6 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 7 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) / 2 ) = ( ( 𝐵 + 𝐴 ) / 2 ) ) |
| 10 | 9 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐴 ↔ ( ( 𝐵 + 𝐴 ) / 2 ) ≤ 𝐴 ) ) |
| 11 | 4 10 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐴 ) ) |
| 12 | avgle2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ) ) | |
| 13 | 11 12 | orbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵 ) ↔ ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐴 ∨ ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ) ) ) |
| 14 | 2 13 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐴 ∨ ( ( 𝐴 + 𝐵 ) / 2 ) ≤ 𝐵 ) ) |