This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facwordi | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑗 = 0 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 0 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑗 = 0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 0 ) ) ) |
| 3 | fveq2 | ⊢ ( 𝑗 = 0 → ( ! ‘ 𝑗 ) = ( ! ‘ 0 ) ) | |
| 4 | 3 | breq2d | ⊢ ( 𝑗 = 0 → ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ↔ ( ! ‘ 𝑀 ) ≤ ( ! ‘ 0 ) ) ) |
| 5 | 2 4 | imbi12d | ⊢ ( 𝑗 = 0 → ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ) ↔ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 0 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 0 ) ) ) ) |
| 6 | breq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑘 ) ) | |
| 7 | 6 | anbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑘 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑗 = 𝑘 → ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ↔ ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ) ↔ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑘 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) ) ) |
| 11 | breq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ ( 𝑘 + 1 ) ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ↔ ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ) ↔ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 16 | breq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝑁 ) ) | |
| 17 | 16 | anbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑗 = 𝑁 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑁 ) ) | |
| 19 | 18 | breq2d | ⊢ ( 𝑗 = 𝑁 → ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ↔ ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑁 ) ) ) |
| 20 | 17 19 | imbi12d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑗 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑗 ) ) ↔ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑁 ) ) ) ) |
| 21 | nn0le0eq0 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 0 ↔ 𝑀 = 0 ) ) | |
| 22 | 21 | biimpa | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 0 ) → 𝑀 = 0 ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 0 ) → ( ! ‘ 𝑀 ) = ( ! ‘ 0 ) ) |
| 24 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 25 | 1re | ⊢ 1 ∈ ℝ | |
| 26 | 24 25 | eqeltri | ⊢ ( ! ‘ 0 ) ∈ ℝ |
| 27 | 26 | leidi | ⊢ ( ! ‘ 0 ) ≤ ( ! ‘ 0 ) |
| 28 | 23 27 | eqbrtrdi | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 0 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 0 ) ) |
| 29 | impexp | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑘 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) ↔ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) ) ) | |
| 30 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 31 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 32 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
| 34 | leloe | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ↔ ( 𝑀 < ( 𝑘 + 1 ) ∨ 𝑀 = ( 𝑘 + 1 ) ) ) ) | |
| 35 | 30 33 34 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) ↔ ( 𝑀 < ( 𝑘 + 1 ) ∨ 𝑀 = ( 𝑘 + 1 ) ) ) ) |
| 36 | nn0leltp1 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑘 ↔ 𝑀 < ( 𝑘 + 1 ) ) ) | |
| 37 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 38 | 37 | nnred | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 39 | 37 | nnnn0d | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ0 ) |
| 40 | 39 | nn0ge0d | ⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑘 ) ) |
| 41 | nn0p1nn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 42 | 41 | nnge1d | ⊢ ( 𝑘 ∈ ℕ0 → 1 ≤ ( 𝑘 + 1 ) ) |
| 43 | 38 33 40 42 | lemulge11d | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ≤ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 44 | facp1 | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) | |
| 45 | 43 44 | breqtrrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 46 | 45 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 47 | faccl | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℕ ) | |
| 48 | 47 | nnred | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℝ ) |
| 49 | 48 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ∈ ℝ ) |
| 50 | 38 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 51 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 52 | 51 | faccld | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 53 | 52 | nnred | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 54 | 53 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 55 | letr | ⊢ ( ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ! ‘ 𝑘 ) ∈ ℝ ∧ ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) → ( ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ∧ ( ! ‘ 𝑘 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) | |
| 56 | 49 50 54 55 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ∧ ( ! ‘ 𝑘 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 57 | 46 56 | mpan2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 58 | 57 | imim2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 59 | 58 | com23 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑘 → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 60 | 36 59 | sylbird | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 < ( 𝑘 + 1 ) → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 61 | fveq2 | ⊢ ( 𝑀 = ( 𝑘 + 1 ) → ( ! ‘ 𝑀 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) | |
| 62 | 48 | leidd | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑀 ) ) |
| 63 | breq2 | ⊢ ( ( ! ‘ 𝑀 ) = ( ! ‘ ( 𝑘 + 1 ) ) → ( ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑀 ) ↔ ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) | |
| 64 | 62 63 | syl5ibcom | ⊢ ( 𝑀 ∈ ℕ0 → ( ( ! ‘ 𝑀 ) = ( ! ‘ ( 𝑘 + 1 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 65 | 61 64 | syl5 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 = ( 𝑘 + 1 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 66 | 65 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 = ( 𝑘 + 1 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
| 67 | 66 | a1dd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 = ( 𝑘 + 1 ) → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 68 | 60 67 | jaod | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 < ( 𝑘 + 1 ) ∨ 𝑀 = ( 𝑘 + 1 ) ) → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 69 | 35 68 | sylbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 70 | 69 | ex | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑘 ∈ ℕ0 → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 71 | 70 | com13 | ⊢ ( 𝑀 ≤ ( 𝑘 + 1 ) → ( 𝑘 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 72 | 71 | com4l | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 73 | 72 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) ) → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ ( 𝑘 + 1 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 74 | 73 | imp4a | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝑘 → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 75 | 29 74 | biimtrid | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑘 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑘 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( 𝑘 + 1 ) ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 76 | 5 10 15 20 28 75 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑁 ) ) ) |
| 77 | 76 | 3impib | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑁 ) ) |
| 78 | 77 | 3com12 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ! ‘ 𝑀 ) ≤ ( ! ‘ 𝑁 ) ) |