This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → 𝑦 = 𝑁 ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( 𝑦 = 0 ↔ 𝑁 = 0 ) ) |
| 3 | 1 | breq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( 0 < 𝑦 ↔ 0 < 𝑁 ) ) |
| 4 | simpl | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → 𝑥 = 𝐴 ) | |
| 5 | 4 | sneqd | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → { 𝑥 } = { 𝐴 } ) |
| 6 | 5 | xpeq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( ℕ × { 𝑥 } ) = ( ℕ × { 𝐴 } ) ) |
| 7 | 6 | seqeq3d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → seq 1 ( · , ( ℕ × { 𝑥 } ) ) = seq 1 ( · , ( ℕ × { 𝐴 } ) ) ) |
| 8 | 7 1 | fveq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
| 9 | 1 | negeqd | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → - 𝑦 = - 𝑁 ) |
| 10 | 7 9 | fveq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) = ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) |
| 12 | 3 8 11 | ifbieq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) = if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) |
| 13 | 2 12 | ifbieq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑁 ) → if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |
| 14 | df-exp | ⊢ ↑ = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℤ ↦ if ( 𝑦 = 0 , 1 , if ( 0 < 𝑦 , ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) ) | |
| 15 | 1ex | ⊢ 1 ∈ V | |
| 16 | fvex | ⊢ ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ∈ V | |
| 17 | ovex | ⊢ ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ∈ V | |
| 18 | 16 17 | ifex | ⊢ if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ∈ V |
| 19 | 15 18 | ifex | ⊢ if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ∈ V |
| 20 | 13 14 19 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) = if ( 𝑁 = 0 , 1 , if ( 0 < 𝑁 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |